60,655 research outputs found

    Switching speed distribution of spin-torque-induced magnetic reversal

    Full text link
    The switching probability of a single-domain ferromagnet under spin-current excitation is evaluated using the Fokker-Planck equation(FPE). In the case of uniaxial anisotropy, the FPE reduces to an ordinary differential equation in which the lowest eigenvalue λ1\lambda_1 determines the slowest switching events. We have calculated λ1\lambda_1 by using both analytical and numerical methods. It is found that the previous model based on thermally distributed initial magnetization states \cite{Sun1} can be accurately justified in some useful limiting conditions.Comment: The 10th Joint MMM/Intermag, HA-0

    Effects of current on vortex and transverse domain walls

    Full text link
    By using the spin torque model in ferromagnets, we compare the response of vortex and transverse walls to the electrical current. For a defect-free sample and a small applied current, the steady state wall mobility is independent of the wall structure. In the presence of defects, the minimum current required to overcome the wall pinning potential is much smaller for the vortex wall than for the transverse wall. During the wall motion, the vortex wall tends to transform to the transverse wall. We construct a phase diagram for the wall mobility and the wall transformation driven by the current

    Charmonium suppression by gluon bremsstrahlung in p-A and A-B collisions

    Full text link
    Prompt gluons are an additional source for charmonium suppression in nuclear collisions, in particular for nucleus-nucleus collisions. These gluons are radiated as bremsstrahlung in N-N collisions and interact inelastically with the charmonium states while the nuclei still overlap. The spectra and mean number of the prompt gluons are calculated perturbatively and the gluon-Psi inelastic cross section is estimated. The integrated cross sections for AB --> J/Psi (Psi')X for p-A and A-B collisions and the dependence on transverse energy for S-U and Pb-Pb can be described quantitatively with some adjustment of one parameter \sigma(gPsi).Comment: 17 pages of Latex including 10 figure

    An efficient rate control algorithm for a wavelet video codec

    Get PDF
    Rate control plays an essential role in video coding and transmission to provide the best video quality at the receiver's end given the constraint of certain network conditions. In this paper, a rate control algorithm using the Quality Factor (QF) optimization method is proposed for the wavelet-based video codec and implemented on an open source Dirac video encoder. A mathematical model which we call Rate-QF (R - QF) model is derived to generate the optimum QF for the current coding frame according to the target bitrate. The proposed algorithm is a complete one pass process and does not require complex mathematical calculation. The process of calculating the QF is quite simple and further calculation is not required for each coded frame. The experimental results show that the proposed algorithm can control the bitrate precisely (within 1% of target bitrate in average). Moreover, the variation of bitrate over each Group of Pictures (GOPs) is lower than that of H.264. This is an advantage in preventing the buffer overflow and underflow for real-time multimedia data streaming

    Effects of spin current on ferromagnets

    Full text link
    When a spin-polarized current flows through a ferromagnet, the local magnetization receives a spin torque. Two consequences of this spin torque are studied. First, the uniformly magnetized ferromagnet becomes unstable if a sufficiently large current is applied. The characteristics of the instability include spin wave generation and magnetization chaos. Second, the spin torque has profound effects on the structure and dynamics of the magnetic domain wall. A detail analysis on the domain wall mass, kinetic energy and wall depinning threshold is given

    Dynamical properties of a trapped dipolar Fermi gas at finite temperature

    Full text link
    We investigate the dynamical properties of a trapped finite-temperature normal Fermi gas with dipole-dipole interaction. For the free expansion dynamics, we show that the expanded gas always becomes stretched along the direction of the dipole moment. In addition, we present the temperature and interaction dependences of the asymptotical aspect ratio. We further study the collapse dynamics of the system by suddenly increasing the dipolar interaction strength. We show that, in contrast to the anisotropic collapse of a dipolar Bose-Einstein condensate, a dipolar Fermi gas always collapses isotropically when the system becomes globally unstable. We also explore the interaction and temperature dependences for the frequencies of the low-lying collective excitations.Comment: 11 pages, 7 figure
    corecore