60,655 research outputs found
Switching speed distribution of spin-torque-induced magnetic reversal
The switching probability of a single-domain ferromagnet under spin-current
excitation is evaluated using the Fokker-Planck equation(FPE). In the case of
uniaxial anisotropy, the FPE reduces to an ordinary differential equation in
which the lowest eigenvalue determines the slowest switching
events. We have calculated by using both analytical and numerical
methods. It is found that the previous model based on thermally distributed
initial magnetization states \cite{Sun1} can be accurately justified in some
useful limiting conditions.Comment: The 10th Joint MMM/Intermag, HA-0
Effects of current on vortex and transverse domain walls
By using the spin torque model in ferromagnets, we compare the response of
vortex and transverse walls to the electrical current. For a defect-free sample
and a small applied current, the steady state wall mobility is independent of
the wall structure. In the presence of defects, the minimum current required to
overcome the wall pinning potential is much smaller for the vortex wall than
for the transverse wall. During the wall motion, the vortex wall tends to
transform to the transverse wall. We construct a phase diagram for the wall
mobility and the wall transformation driven by the current
Charmonium suppression by gluon bremsstrahlung in p-A and A-B collisions
Prompt gluons are an additional source for charmonium suppression in nuclear
collisions, in particular for nucleus-nucleus collisions. These gluons are
radiated as bremsstrahlung in N-N collisions and interact inelastically with
the charmonium states while the nuclei still overlap. The spectra and mean
number of the prompt gluons are calculated perturbatively and the
gluon-Psi inelastic cross section is estimated. The integrated cross sections
for AB --> J/Psi (Psi')X for p-A and A-B collisions and the dependence on
transverse energy for S-U and Pb-Pb can be described quantitatively with some
adjustment of one parameter \sigma(gPsi).Comment: 17 pages of Latex including 10 figure
An efficient rate control algorithm for a wavelet video codec
Rate control plays an essential role in video coding and transmission to provide the best video quality at the receiver's end given the constraint of certain network conditions. In this paper, a rate control algorithm using the Quality Factor (QF) optimization method is proposed for the wavelet-based video codec and implemented on an open source Dirac video encoder. A mathematical model which we call Rate-QF (R - QF) model is derived to generate the optimum QF for the current coding frame according to the target bitrate. The proposed algorithm is a complete one pass process and does not require complex mathematical calculation. The process of calculating the QF is quite simple and further calculation is not required for each coded frame. The experimental results show that the proposed algorithm can control the bitrate precisely (within 1% of target bitrate in average). Moreover, the variation of bitrate over each Group of Pictures (GOPs) is lower than that of H.264. This is an advantage in preventing the buffer overflow and underflow for real-time multimedia data streaming
Effects of spin current on ferromagnets
When a spin-polarized current flows through a ferromagnet, the local
magnetization receives a spin torque. Two consequences of this spin torque are
studied. First, the uniformly magnetized ferromagnet becomes unstable if a
sufficiently large current is applied. The characteristics of the instability
include spin wave generation and magnetization chaos. Second, the spin torque
has profound effects on the structure and dynamics of the magnetic domain wall.
A detail analysis on the domain wall mass, kinetic energy and wall depinning
threshold is given
Dynamical properties of a trapped dipolar Fermi gas at finite temperature
We investigate the dynamical properties of a trapped finite-temperature
normal Fermi gas with dipole-dipole interaction. For the free expansion
dynamics, we show that the expanded gas always becomes stretched along the
direction of the dipole moment. In addition, we present the temperature and
interaction dependences of the asymptotical aspect ratio. We further study the
collapse dynamics of the system by suddenly increasing the dipolar interaction
strength. We show that, in contrast to the anisotropic collapse of a dipolar
Bose-Einstein condensate, a dipolar Fermi gas always collapses isotropically
when the system becomes globally unstable. We also explore the interaction and
temperature dependences for the frequencies of the low-lying collective
excitations.Comment: 11 pages, 7 figure
- …