19,344 research outputs found

    Linear statistics for zeros of Riemann's zeta function

    Get PDF
    We consider a smooth counting function of the scaled zeros of the Riemann zeta function, around height T. We show that the first few moments tend to the Gaussian moments, with the exact number depending on the statistic considered

    MatLab vs. Python vs. R

    Get PDF

    Quantum key distribution over 122 km of standard telecom fiber

    Full text link
    We report the first demonstration of quantum key distribution over a standard telecom fiber exceeding 100 km in length. Through careful optimisation of the interferometer and single photon detector, we achieve a quantum bit error ratio of 8.9% for a 122km link, allowing a secure shared key to be formed after error correction and privacy amplification. Key formation rates of up to 1.9 kbit/sec are achieved depending upon fiber length. We discuss the factors limiting the maximum fiber length in quantum cryptography

    Mock-Gaussian Behaviour for Linear Statistics of Classical Compact Groups

    Full text link
    We consider the scaling limit of linear statistics for eigenphases of a matrix taken from one of the classical compact groups. We compute their moments and find that the first few moments are Gaussian, whereas the limiting distribution is not. The precise number of Gaussian moments depends upon the particular statistic considered

    Functional Electrical Stimulation mediated by Iterative Learning Control and 3D robotics reduces motor impairment in chronic stroke

    Get PDF
    Background: Novel stroke rehabilitation techniques that employ electrical stimulation (ES) and robotic technologies are effective in reducing upper limb impairments. ES is most effective when it is applied to support the patients’ voluntary effort; however, current systems fail to fully exploit this connection. This study builds on previous work using advanced ES controllers, and aims to investigate the feasibility of Stimulation Assistance through Iterative Learning (SAIL), a novel upper limb stroke rehabilitation system which utilises robotic support, ES, and voluntary effort. Methods: Five hemiparetic, chronic stroke participants with impaired upper limb function attended 18, 1 hour intervention sessions. Participants completed virtual reality tracking tasks whereby they moved their impaired arm to follow a slowly moving sphere along a specified trajectory. To do this, the participants’ arm was supported by a robot. ES, mediated by advanced iterative learning control (ILC) algorithms, was applied to the triceps and anterior deltoid muscles. Each movement was repeated 6 times and ILC adjusted the amount of stimulation applied on each trial to improve accuracy and maximise voluntary effort. Participants completed clinical assessments (Fugl-Meyer, Action Research Arm Test) at baseline and post-intervention, as well as unassisted tracking tasks at the beginning and end of each intervention session. Data were analysed using t-tests and linear regression. Results: From baseline to post-intervention, Fugl-Meyer scores improved, assisted and unassisted tracking performance improved, and the amount of ES required to assist tracking reduced. Conclusions: The concept of minimising support from ES using ILC algorithms was demonstrated. The positive results are promising with respect to reducing upper limb impairments following stroke, however, a larger study is required to confirm this

    Track-based improvement in the jet transverse momentum resolution for ATLAS

    Get PDF
    We present a track-based method for improving the jet momentum resolution in ATLAS. Information is added to the reconstructed jet after the standard jet energy scale corrections have been applied. Track-based corrections are implemented, and a 10 â 15% improvement in the jet transverse momentum resolution at low pT is achieved. The method is explained, and some validation and physics results are presented. Additional variables are described and analyzed for their resolution improvement potential

    Exact eigenvalue spectrum of a class of fractal scale-free networks

    Full text link
    The eigenvalue spectrum of the transition matrix of a network encodes important information about its structural and dynamical properties. We study the transition matrix of a family of fractal scale-free networks and analytically determine all the eigenvalues and their degeneracies. We then use these eigenvalues to evaluate the closed-form solution to the eigentime for random walks on the networks under consideration. Through the connection between the spectrum of transition matrix and the number of spanning trees, we corroborate the obtained eigenvalues and their multiplicities.Comment: Definitive version accepted for publication in EPL (Europhysics Letters
    • …
    corecore