8,536 research outputs found

    Theory of layered-oxide cathode degradation in Li-ion batteries by oxidation-induced cation disorder

    Full text link
    Disorder-driven degradation phenomena, such as structural phase transformations and surface reconstructions, can significantly reduce the lifetime of Li-ion batteries, especially those with nickel-rich layered-oxide cathodes. We develop a general free energy model for layered-oxide ion-intercalation materials as a function of the degree of disorder, which represents the density of defects in the host crystal. The model accounts for defect core energies, long-range dipolar electrostatic forces, and configurational entropy of the solid solution. In the case of nickel-rich oxides, we hypothesize that nickel with a high concentration of defects is driven into the bulk by electrostatic forces as oxidation reactions at the solid-electrolyte interface reduce nickel and either evolve oxygen gas or oxidize the organic electrolyte at high potentials (>4.4V vs. Li/Li+). The model is used in battery cycling simulations to describe the extent of cathode degradation when using different voltage cutoffs, in agreement with experimental observations that lower-voltage cycling can substantially reduce cathode degradation. The theory provides a framework to guide the development of cathode compositions, coatings and electrolytes to enhance rate capability and enhance battery lifetime. The general theory of cation-disorder formation may also find applications in electrochemical water treatment and ion separations, such as lithium extraction from brines, based on competitive ion intercalation in battery materials

    Liquid Crystal-Solid Interface Structure at the Antiferroelectric-Ferroelectric Phase Transition

    Full text link
    Total Internal Reflection (TIR) is used to probe the molecular organization at the surface of a tilted chiral smectic liquid crystal at temperatures in the vicinity of the bulk antiferroelectric-ferroelectric phase transition. Data are interpreted using an exact analytical solution of a real model for ferroelectric order at the surface. In the mixture T3, ferroelectric surface order is expelled with the bulk ferroelectric-antiferroelectric transition. The conditions for ferroelectric order at the surface of an antiferroelectric bulk are presented

    All roads lead to the places of your interest: An on-demand, ride-sharing visitor transport service

    Get PDF
    Successful visitor transport within large tourist sites should balance visitor experience and operating costs. Inspired by the model of sharing economy, we design a “user-centered” intelligent visitor transport system to improve the efficiency and quality of experience of transport service in large tourist sites. The system’s core approach is a three-stage heuristic model based on Pareto optimality. Results of the proposed service indicate a drastic reduction of visitor delay time and an improvement in energy efficiency. The proposed scheduling schemes for organizers are more diversified and adaptable than the existing service

    Ultrathin MgB2 films fabricated on Al2O3 substrate by hybrid physical-chemical vapor deposition with high Tc and Jc

    Full text link
    Ultrathin MgB2 superconducting films with a thickness down to 7.5 nm are epitaxially grown on (0001) Al2O3 substrate by hybrid physical-chemical vapor deposition method. The films are phase-pure, oxidation-free and continuous. The 7.5 nm thin film shows a Tc(0) of 34 K, which is so far the highest Tc(0) reported in MgB2 with the same thickness. The critical current density of ultrathin MgB2 films below 10 nm is demonstrated for the first time as Jc ~ 10^6 A cm^{-2} for the above 7.5 nm sample at 16 K. Our results reveal the excellent superconducting properties of ultrathin MgB2 films with thicknesses between 7.5 and 40 nm on Al2O3 substrate.Comment: 7 pages, 4 figures, 2 table
    • …
    corecore