42,909 research outputs found
Lattice QCD calculation of scattering length
We study s-wave pion-pion () scattering length in lattice QCD for
pion masses ranging from 330 MeV to 466 MeV. In the "Asqtad" improved staggered
fermion formulation, we calculate the four-point functions for isospin
I=0 and 2 channels, and use chiral perturbation theory at next-to-leading order
to extrapolate our simulation results. Extrapolating to the physical pion mass
gives the scattering lengths as and for isospin I=2 and 0 channels, respectively. Our lattice
simulation for scattering length in the I=0 channel is an exploratory
study, where we include the disconnected contribution, and our preliminary
result is near to its experimental value. These simulations are performed with
MILC 2+1 flavor gauge configurations at lattice spacing fm.Comment: Remove some typo
Rummukainen-Gottlieb's formula on two-particle system with different mass
L\"uscher established a non-perturbative formula to extract the elastic
scattering phases from two-particle energy spectrum in a torus using lattice
simulations. Rummukainen and Gottlieb further extend it to the moving frame,
which is devoted to the system of two identical particles. In this work, we
generalize Rummukainen-Gottlieb's formula to the generic two-particle system
where two particles are explicitly distinguishable, namely, the masses of the
two particles are different. The finite size formula are achieved for both
and symmetries. Our analytical results will be very helpful
for the study of some resonances, such as kappa, vector kaon, and so on.Comment: matching its published paper and make it concise, and to remove text
overlap with arXiv:hep-lat/9503028, arXiv:hep-lat/0404001 by other author
Multi-aspect, robust, and memory exclusive guest os fingerprinting
Precise fingerprinting of an operating system (OS) is critical to many security and forensics applications in the cloud, such as virtual machine (VM) introspection, penetration testing, guest OS administration, kernel dump analysis, and memory forensics. The existing OS fingerprinting techniques primarily inspect network packets or CPU states, and they all fall short in precision and usability. As the physical memory of a VM always exists in all these applications, in this article, we present OS-Sommelier+, a multi-aspect, memory exclusive approach for precise and robust guest OS fingerprinting in the cloud. It works as follows: given a physical memory dump of a guest OS, OS-Sommelier+ first uses a code hash based approach from kernel code aspect to determine the guest OS version. If code hash approach fails, OS-Sommelier+ then uses a kernel data signature based approach from kernel data aspect to determine the version. We have implemented a prototype system, and tested it with a number of Linux kernels. Our evaluation results show that the code hash approach is faster but can only fingerprint the known kernels, and data signature approach complements the code signature approach and can fingerprint even unknown kernels
Chaotic Properties of Subshifts Generated by a Non-Periodic Recurrent Orbit
The chaotic properties of some subshift maps are investigated. These
subshifts are the orbit closures of certain non-periodic recurrent points of a
shift map. We first provide a review of basic concepts for dynamics of
continuous maps in metric spaces. These concepts include nonwandering point,
recurrent point, eventually periodic point, scrambled set, sensitive dependence
on initial conditions, Robinson chaos, and topological entropy. Next we review
the notion of shift maps and subshifts. Then we show that the one-sided
subshifts generated by a non-periodic recurrent point are chaotic in the sense
of Robinson. Moreover, we show that such a subshift has an infinite scrambled
set if it has a periodic point. Finally, we give some examples and discuss the
topological entropy of these subshifts, and present two open problems on the
dynamics of subshifts
Josephson dynamics of a spin-orbit coupled Bose-Einstein condensate in a double well potential
We investigate the quantum dynamics of an experimentally realized spin-orbit
coupled Bose-Einstein condensate in a double well potential. The spin-orbit
coupling can significantly enhance the atomic inter-well tunneling. We find the
coexistence of internal and external Josephson effects in the system, which are
moreover inherently coupled in a complicated form even in the absence of
interatomic interactions. Moreover, we show that the spin-dependent tunneling
between two wells can induce a net atomic spin current referred as spin
Josephson effects. Such novel spin Josephson effects can be observable for
realistically experimental conditions.Comment: 8 page
ZIKV infection activates the IRE1-XBP1 and ATF6 pathways of unfolded protein response in neural cells.
BACKGROUND: Many viruses depend on the extensive membranous network of the endoplasmic reticulum (ER) for their translation, replication, and packaging. Certain membrane modifications of the ER can be a trigger for ER stress, as well as the accumulation of viral protein in the ER by viral infection. Then, unfolded protein response (UPR) is activated to alleviate the stress. Zika virus (ZIKV) is a mosquito-borne flavivirus and its infection causes microcephaly in newborns and serious neurological complications in adults. Here, we investigated ER stress and the regulating model of UPR in ZIKV-infected neural cells in vitro and in vivo. METHODS: Mice deficient in type I and II IFN receptors were infected with ZIKV via intraperitoneal injection and the nervous tissues of the mice were assayed at 5 days post-infection. The expression of phospho-IRE1, XBP1, and ATF6 which were the key markers of ER stress were analyzed by immunohistochemistry assay in vivo. Additionally, the nuclear localization of XBP1s and ATF6n were analyzed by immunohistofluorescence. Furthermore, two representative neural cells, neuroblastoma cell line (SK-N-SH) and astrocytoma cell line (CCF-STTG1), were selected to verify the ER stress in vitro. The expression of BIP, phospho-elF2α, phospho-IRE1, and ATF6 were analyzed through western blot and the nuclear localization of XBP1s was performed by confocal immunofluorescence microscopy. RT-qPCR was also used to quantify the mRNA level of the UPR downstream genes in vitro and in vivo. RESULTS: ZIKV infection significantly upregulated the expression of ER stress markers in vitro and in vivo. Phospho-IRE1 and XBP1 expression significantly increased in the cerebellum and mesocephalon, while ATF6 expression significantly increased in the mesocephalon. ATF6n and XBP1s were translocated into the cell nucleus. The levels of BIP, ATF6, phospho-elf2α, and spliced xbp1 also significantly increased in vitro. Furthermore, the downstream genes of UPR were detected to investigate the regulating model of the UPR during ZIKV infection in vitro and in vivo. The transcriptional levels of atf4, gadd34, chop, and edem-1 in vivo and that of gadd34 and chop in vitro significantly increased. CONCLUSION: Findings in this study demonstrated that ZIKV infection activates ER stress in neural cells. The results offer clues to further study the mechanism of neuropathogenesis caused by ZIKV infection
- …
