3 research outputs found

    Reversible Native Chemical Ligation: A Facile Access to Dynamic Covalent Peptides

    No full text
    The broad interest of using reversible covalent bonds in chemistry, in particular at its interfaces with biology and materials science, has been recently established through numerous examples in the literature. However, the challenging exchange of peptide fragments using a dynamic covalent peptide bond has not yet been achieved without enzymatic catalysis because of its high thermodynamic stability. Here we show that peptide fragments can be exchanged by a chemoselective and reversible native chemical ligation (NCL) which can take place at <i>N</i>-(methyl)-cysteine residues. This very mild reaction is efficient in aqueous solution, is buffered at physiological pH in the presence of dithiothreitol (DTT), and shows typical half-times of equilibration in the 10 h range

    Precision Templating with DNA of a Virus-like Particle with Peptide Nanostructures

    No full text
    We report here the preparation of filamentous virus-like particles by the encapsulation of a linear or circular double-stranded DNA template with preassembled mushroom-shaped nanostructures having a positively charged domain. These nanostructures mimic the capsid proteins of natural filamentous viruses and are formed by self-assembly of coiled-coil peptides conjugated at opposite termini with cationic segments and poly­(ethylene glycol) (PEG) chains. We found that a high molecular weight of PEG segments was critical for the formation of monodisperse and uniformly shaped filamentous complexes. It is proposed that electrostatic attachment of the nanostructures with sufficiently long PEG segments generates steric forces that increase the rigidity of the neutralized DNA template. This stiffening counterbalances the natural tendency of the DNA template to condense into toroids or buckle multiple times. The control achieved over both shape and dimensions of the particles offers a strategy to create one-dimensional supramolecular nanostructures of defined length containing nucleic acids

    Coassembled Cytotoxic and Pegylated Peptide Amphiphiles Form Filamentous Nanostructures with Potent Antitumor Activity in Models of Breast Cancer

    No full text
    Self-assembled peptide amphiphiles (PAs) consisting of hydrophobic, hydvrogen-bonding, and charged hydrophilic domains form cylindrical nanofibers in physiological conditions and allow for the presentation of a high density of bioactive epitopes on the nanofiber surface. We report here on the use of PAs to form multifunctional nanostructures with tumoricidal activity. The combination of a cationic, membrane-lytic PA coassembled with a serum-protective, pegylated PA was shown to self-assemble into nanofibers. Addition of the pegylated PA to the nanostructure substantially limited degradation of the cytolytic PA by the protease trypsin, with an 8-fold increase in the amount of intact PA observed after digestion. At the same time, addition of up to 50% pegylated PA to the nanofibers did not decrease the <i>in vitro</i> cytotoxicity of the cytolytic PA. Using a fluorescent tag covalently attached to PA nanofibers we were able to track the biodistribution in plasma and tissues of tumor-bearing mice over time after intraperitoneal administration of the nanoscale filaments. Using an orthotopic mouse xenograft model of breast cancer, systemic administration of the cytotoxic pegylated nanostructures significantly reduced tumor cell proliferation and overall tumor growth, demonstrating the potential of multifunctional PA nanostructures as versatile cancer therapeutics
    corecore