628 research outputs found

    Molecular-Cloud-Scale Chemical Composition I: Mapping Spectral Line Survey toward W51 in the 3 mm Band

    Get PDF
    We have conducted a mapping spectral line survey toward the Galactic giant molecular cloud W51 in the 3 mm band with the Mopra 22 m telescope in order to study an averaged chemical composition of the gas extended over a molecular cloud scale in our Galaxy. We have observed the area of 25′×30′25' \times 30', which corresponds to 39 pc ×\times 47 pc. The frequency ranges of the observation are 85.1 - 101.1 GHz and 107.0 - 114.9 GHz. In the spectrum spatially averaged over the observed area, spectral lines of 12 molecular species and 4 additional isotopologues are identified. An intensity pattern of the spatially-averaged spectrum is found to be similar to that of the spiral arm in the external galaxy M51, indicating that these two sources have similar chemical compositions. The observed area has been classified into 5 sub-regions according to the integrated intensity of 13^{13}CO(J=1−0J=1-0) (I13COI_{\rm ^{13}CO}), and contributions of the fluxes of 11 molecular lines from each sub-region to the averaged spectrum have been evaluated. For most of molecular species, 50 % or more of the flux come from the sub-regions with I13COI_{\rm ^{13}CO} from 25 K km s−1^{-1} to 100 K km s−1^{-1}, which does not involve active star forming regions. Therefore, the molecular-cloud-scale spectrum observed in the 3 mm band hardly represents the chemical composition of star forming cores, but mainly represents the chemical composition of an extended quiescent molecular gas. The present result constitutes a sound base for interpreting the spectra of external galaxies at a resolution of a molecular cloud scale (∼10\sim10 pc) or larger.Comment: Accepted for publication in Ap

    Surface Diffusion of Carbon Atoms as a Driver of Interstellar Organic Chemistry

    Full text link
    Many interstellar complex organic molecules (COMs) are believed to be produced on the surfaces of icy grains at low temperatures. Atomic carbon is considered responsible for the skeletal evolution processes, such as C-C bond formation, via insertion or addition reactions. Before reactions, C atoms must diffuse on the surface to encounter reaction partners; therefore, information on their diffusion process is critically important for evaluating the role of C atoms in the formation of COMs. In situ detection of C atoms on ice was achieved by a combination of photostimulated desorption and resonance enhanced multiphoton ionization methods. We found that C atoms weakly bound to the ice surface diffused approximately above 30 K and produced C2 molecules. The activation energy for C-atom surface diffusion was experimentally determined to be 88 meV (1,020 K), indicating that the diffusive reaction of C atoms is activated at approximately 22 K on interstellar ice. The facile diffusion of C at T > 22 K atoms on interstellar ice opens a previously overlooked chemical regime where the increase in complexity of COMs as driven by C atoms. Carbon addition chemistry can be an alternative source of chemical complexity in translucent clouds and protoplanetary disks with crucial implications in our current understanding on the origin and evolution of organic chemistry in our Universe.Comment: 33 pages (main + SI), 14 figures, 1 tabl

    Depletion of 15N in the center of L1544: Early transition from atomic to molecular nitrogen?

    Full text link
    We performed sensitive observations of the N15ND+(1-0) and 15NND+(1-0) lines toward the prestellar core L1544 using the IRAM 30m telescope. The lines are not detected down to 3 sigma levels in 0.2 km/s channels of around 6 mK. The non-detection provides the lower limit of the 14N/15N ratio for N2D+ of ~700-800, which is much higher than the elemental abundance ratio in the local ISM of ~200-300. The result indicates that N2 is depleted in 15N in the central part of L1544, because N2D+ preferentially traces the cold dense gas, and because it is a daughter molecule of N2. In-situ chemistry is unlikely responsible for the 15N depletion in N2; neither low-temperature gas phase chemistry nor isotope selective photodissociation of N2 explains the 15N depletion; the former prefers transferring 15N to N2, while the latter requires the penetration of interstellar FUV photons into the core center. The most likely explanation is that 15N is preferentially partitioned into ices compared to 14N via the combination of isotope selective photodissociation of N2 and grain surface chemistry in the parent cloud of L1544 or in the outer regions of L1544 which are not fully shielded from the interstellar FUV radiation. The mechanism is the most efficient at the chemical transition from atomic to molecular nitrogen. In other words, our result suggests that the gas in the central part of L1544 already went trough the transition from atomic to molecular nitrogen in the earlier evolutionary stage, and that N2 is currently the primary form of gas-phase nitrogen.Comment: 5 pages, 2 figures, 2 tables, Accepted for publication in A&A Letter

    Diffusion activation energy and desorption activation energy for astrochemically relevant species on water ice show no clear relation

    Full text link
    The activation energy for desorption (Edes) and that for surface diffusion (Esd) of adsorbed molecules on dust grains are two of the most important parameters for the chemistry in the interstellar medium. Although Edes is often measured by laboratory experiments, the measurement of Esd is sparse. Due to the lack of data, astrochemical models usually assume a simple scaling relation, Esd = fEdes, where f is a constant, irrespective of adsorbed species. Here, we experimentally measure Esd for CH4, H2S, OCS, CH3OH, and CH3CN on water-ice surfaces using an ultra-high-vacuum transmission electron microscope (UHV-TEM). Compiling the measured Esd values and Edes values from the literature, we find that the value of f ranges from ~0.2 to ~0.7, depending on the species. Unless f (or Esd) for the majority of species is available, a natural alternative approach for astrochemical models is running multiple simulations, varying f for each species randomly. In this approach, ranges of molecular abundances predicted by multiple simulations, rather than abundances predicted by each simulation, are important. We here run 10,000 simulations of astrochemical models of molecular clouds and protostellar envelopes, randomly assigning a value of f for each species. In the former case, we identify several key species whose Esd most strongly affects the uncertainties of the model predictions; Esd for those species should be investigated in future laboratory and quantum chemical studies. In the latter case, uncertainties in the Esd of many species contribute to the uncertainties in the model predictions.Comment: Accepted for publication in ApJ
    • …
    corecore