246 research outputs found

    Synthetic Biology: A Bridge between Artificial and Natural Cells.

    Get PDF
    Artificial cells are simple cell-like entities that possess certain properties of natural cells. In general, artificial cells are constructed using three parts: (1) biological membranes that serve as protective barriers, while allowing communication between the cells and the environment; (2) transcription and translation machinery that synthesize proteins based on genetic sequences; and (3) genetic modules that control the dynamics of the whole cell. Artificial cells are minimal and well-defined systems that can be more easily engineered and controlled when compared to natural cells. Artificial cells can be used as biomimetic systems to study and understand natural dynamics of cells with minimal interference from cellular complexity. However, there remain significant gaps between artificial and natural cells. How much information can we encode into artificial cells? What is the minimal number of factors that are necessary to achieve robust functioning of artificial cells? Can artificial cells communicate with their environments efficiently? Can artificial cells replicate, divide or even evolve? Here, we review synthetic biological methods that could shrink the gaps between artificial and natural cells. The closure of these gaps will lead to advancement in synthetic biology, cellular biology and biomedical applications

    Micro and nano dual-scale structures fabricated by amplitude modulation in multi-beam laser interference lithography

    Get PDF
    © 2017 Optical Society of America. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reservedIn this work, an effective method was presented to obtain a specific micro and nano dual-structures by amplitude modulation in multi-beam laser interference lithography (LIL). Moiré effect was applied to generate the amplitude modulation. The specific intensity modulation patterns can be obtained by the control of the parameter settings of incident laser beams. Both the incident angle and azimuth angle asymmetric configurations can cause the amplitude modulation in the interference optic field and the modulation period is determined by the angle offset. A four-beam LIL system was set up to fabricate patterns on photoresist and verify the method. The experimental results are in good agreement with the theoretical analysis

    Synthesis and Catalytic Performance of Ni/SiO 2

    Get PDF
    A series of Ni/SiO2 catalysts with different Ni content were prepared by sol-gel method for application in the synthesis of 2-methyltetrahydrofuran (2-MTHF) by hydrogenation of 2-methylfuran (2-MF). The catalyst structure was investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and temperature programmed reduction (TPR). It is found that structures and catalytic performance of the catalysts were highly affected by the Ni content. The catalyst with a 25% Ni content had an appropriate size of the Ni species and larger BET surface area and produced a higher 2-MF conversion with enhanced selectivity in 2-MTHF

    Microbial responses to inorganic nutrient amendment overridden by warming: Consequences on soil carbon stability.

    Get PDF
    Eutrophication and climate warming, induced by anthropogenic activities, are simultaneously occurring worldwide and jointly affecting soil carbon stability. Therefore, it is of great interest to examine whether and how they interactively affect soil microbial community, a major soil carbon driver. Here, we showed that climate warming, simulated by southward transferring Mollisol soil in agricultural ecosystems from the cold temperate climate zone (N) to warm temperate climate (C) and subtropical climate zone (S), decreased soil organic matter (SOM) by 6%-12%. In contrast, amendment with nitrogen, phosphorus and potassium enhanced plant biomass by 97% and SOM by 6% at the N site, thus stimulating copiotrophic taxa but reducing oligotrophic taxa in relative abundance. However, microbial responses to nutrient amendment were overridden by soil transfer in that nutrient amendment had little effect at the C site but increased recalcitrant carbon-degrading fungal Agaricomycetes and Microbotryomycetes taxa derived from Basidiomycota by 4-17 folds and recalcitrant carbon-degrading genes by 23%-40% at the S site, implying a possible priming effect. Consequently, SOM at the S site was not increased by nutrient amendment despite increased plant biomass by 108%. Collectively, we demonstrate that soil transfer to warmer regions overrides microbial responses to nutrient amendment and weakens soil carbon sequestration

    RIPK4 Suppresses the Invasion and Metastasis of Hepatocellular Carcinoma by Inhibiting the Phosphorylation of STAT3

    Get PDF
    Receptor interacting serine/threonine kinase 4 (RIPK4) is a member of the threonine/serine protein kinase family; it plays related functions in a variety of tumours, but its biological function has not been fully revealed. It has been reported that it is differentially expressed in hepatocellular carcinoma (HCC). Our research aimed to reveal the role of RIPK4 in the progression of HCC and to reveal the biological behaviour of RIPK4 in HCC. We analysed the differences in RIPK4 expression in HCC by using a publicly available data set. By using PCR, Western blotting and immunohistochemical staining methods, we detected the expression level of RIPK4 in HCC patient specimens and studied the relationship between the expression of RIPK4 and the clinicopathological features of HCC patients. The prognostic data were combined to analyse the relationship between RIPK4 and HCC patient survival and tumour recurrence. We found that the expression level of RIPK4 in nontumour tissues was significantly higher than that in tumour tissues, and the level of RIPK4 was significantly positively correlated with postoperative survival and recurrence in HCC patients. Further, our study found that RIPK4 inhibits the progression of HCC by influencing the invasion and metastasis of HCC and that overexpression of RIPK4 reduces the invasion and metastasis of HCC by inhibiting epithelial-mesenchymal transition (EMT) and the STAT3 pathway. In in vivo experiments, overexpression of RIPK4 stably inhibited HCC metastasis. To summarize, our research revealed the relationship between RIPK4 and the prognosis of patients with HCC. We discovered that RIPK4 affects the invasion and metastasis of HCC through the EMT and STAT3 pathways. Targeted inhibition of the RIPK4 gene and the STAT3 pathway may be potential therapeutic strategies for inhibiting the postoperative recurrence and metastasis of HCC

    Synthesis and Catalytic Performance of Ni/SiO 2 for Hydrogenation of 2-Methylfuran to 2-Methyltetrahydrofuran

    Get PDF
    A series of Ni/SiO 2 catalysts with different Ni content were prepared by sol-gel method for application in the synthesis of 2-methyltetrahydrofuran (2-MTHF) by hydrogenation of 2-methylfuran (2-MF). The catalyst structure was investigated by Xray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and temperature programmed reduction (TPR). It is found that structures and catalytic performance of the catalysts were highly affected by the Ni content. The catalyst with a 25% Ni content had an appropriate size of the Ni species and larger BET surface area and produced a higher 2-MF conversion with enhanced selectivity in 2-MTHF

    Constraints on the spacetime metric around seven "bare" AGNs using X-ray reflection spectroscopy

    Get PDF
    We present the study of a sample of seven "bare" active galactic nuclei (AGN) observed with Suzaku. We interpret the spectrum of these sources with a relativistic reflection component and we employ our model RELXILL_NK to test the Kerr nature of their supermassive black holes. We constrain the Johannsen deformation parameters α13\alpha_{13} and α22\alpha_{22}, in which the Kerr metric is recovered when α13=α22=0\alpha_{13} = \alpha_{22} = 0. All our measurements are consistent with the hypothesis that the spacetime geometry around these supermassive objects is described by the Kerr solution. For some sources, we obtain quite strong constraints on α13\alpha_{13} and α22\alpha_{22} when compared to those found in our previous studies. We discuss the systematic uncertainties in our tests and the implications of our results.Comment: 15 pages, 12 figures. v2: refereed versio
    • …
    corecore