87 research outputs found

    Nanowire Growth for Sensor Arrays

    Full text link
    A design concept for nanowire-based sensors and arrays is described. The fabrication technique involves electrodeposition to directly grow nanowires between patterned thin film contact electrodes. To prove our concept, we have electrodeposited 1-mm diameter Pd single wires and small arrays. To demonstrate nanowire sensors, we have electrochemically grown metal (Pd, Au, Pt), metal oxide (Sb2O3), and conducting polymer (polyaniline) bundled nanowires. Using Pt bundled nanowires surface modified with glucose oxidase, we have demonstrated glucose detection as a demonstration of a biomolecular sensor.Comment: To appear in Nanofabrication Technologies, Ed. E. A. Dobisz, SPIE Proceedings 5220, pp. xxx (2003, in press

    In Situ Electrochemical Deposition of Microscopic Wires

    Get PDF
    A method of fabrication of wires having micron and submicron dimensions is built around electrochemical deposition of the wires in their final positions between electrodes in integrated circuits or other devices in which the wires are to be used. Heretofore, nanowires have been fabricated by a variety of techniques characterized by low degrees of controllability and low throughput rates, and it has been necessary to align and electrically connect the wires in their final positions by use of sophisticated equipment in expensive and tedious post-growth assembly processes. The present method is more economical, offers higher yields, enables control of wire widths, and eliminates the need for post-growth assembly. The wires fabricated by this method could be used as simple electrical conductors or as transducers in sensors. Depending upon electrodeposition conditions and the compositions of the electroplating solutions in specific applications, the wires could be made of metals, alloys, metal oxides, semiconductors, or electrically conductive polymers. In this method, one uses fabrication processes that are standard in the semiconductor industry. These include cleaning, dry etching, low-pressure chemical vapor deposition, lithography, dielectric deposition, electron-beam lithography, and metallization processes as well as the electrochemical deposition process used to form the wires. In a typical case of fabrication of a circuit that includes electrodes between which microscopic wires are to be formed on a silicon substrate, the fabrication processes follow a standard sequence until just before the fabrication of the microscopic wires. Then, by use of a thermal SiO-deposition technique, the electrodes and the substrate surface areas in the gaps between them are covered with SiO. Next, the SiO is electron-beam patterned, then reactive-ion etched to form channels having specified widths (typically about 1 m or less) that define the widths of the wires to be formed. Drops of an electroplating solution are placed on the substrate in the regions containing the channels thus formed, then the wires are electrodeposited from the solution onto the exposed portions of the electrodes and into the channels. The electrodeposition is a room-temperature, atmospheric-pressure process. The figure shows an example of palladium wires that were electrodeposited into 1-mm-wide channels between gold electrodes

    Ion Milling On Steps for Fabrication of Nanowires

    Get PDF
    Arrays of nanowires having controlled dimensions can now be fabricated on substrates, optionally as integral parts of multilayer structures, by means of a cost-effective, high-yield process based on ion milling on steps. Nanowires made, variously, of semiconductors or metals are needed as components of sensors and high-density electronic circuits. Unlike prior processes used to fabricate nanowires, the present process does not involve electron-beam lithography, manipulation of nanoscopic objects by use of an atomic-force microscope, or any other technique that is inherently unsuitable for scaling up to mass production. In comparison with the prior processes, this process is rapid and simple. Wires having widths as small as a few tens of nanometers and lengths as long as millimeters have been fabricated by use of this process. The figure depicts a workpiece at different stages of the process. A silicon dioxide substrate is coated with a photoresist or poly(methyl methacrylate) [PMMA] to a thickness of as much as 500 nm. The photoresist or PMMA is patterned to form edges where wires are to be formed. A metal - either Pt or Ti - is deposited, by sputtering, to a thickness of as much as 200 nm. By ion milling at normal incidence, the thickness of the metal deposit is reduced until the only metal that remains is in the form of wall-like nanowires along the edges of the photoresist or PMMA. Finally, an oxygen plasma is used to remove the photoresist or PMMA, leaving only the nanowires on the substrate

    Materialization of single multicomposite nanowire: entrapment of ZnO nanoparticles in polyaniline nanowire

    Get PDF
    We present materialization of single multicomposite nanowire (SMNW)-entrapped ZnO nanoparticles (NPs) via an electrochemical growth method, which is a newly developed fabrication method to grow a single nanowire between a pair of pre-patterned electrodes. Entrapment of ZnO NPs was controlled via different conditions of SMNW fabrication such as an applied potential and mixture ratio of NPs and aniline solution. The controlled concentration of ZnO NP results in changes in the physical properties of the SMNWs, as shown in transmission electron microscopy images. Furthermore, the electrical conductivity and elasticity of SMNWs show improvement over those of pure polyaniline nanowire. The new nano-multicomposite material showed synergistic effects on mechanical and electrical properties, with logarithmical change and saturation increasing ZnO NP concentration

    Validation of the Organizational Culture Assessment Instrument: An Application of the Korean Version

    Get PDF
    The purpose of this study was to examine the psychometric properties of the Korean version of the Organizational Culture Assessment Instrument (OCAI) based on the Competing Values Framework (CVF). More specially, cultural equivalence between the Korean version and the original English version of the OCAI was evaluated using 39 bilingual Koreans. Next, a field test was conducted to examine scale reliability and construct validity of the Korean version of the OCAI using 133 organizational members from the Korean Professional Baseball League (KPBL). The findings indicate that the Korean version was successfully translated, items maintained the same meaning of the original OCAI items, and yielded acceptable psychometric properties making it applicable to Korean sport organizations

    Detection of Cardiac Biomarkers Using Single Polyaniline Nanowire-Based Conductometric Biosensors

    Get PDF
    The detection of myoglobin (Myo), cardiac troponin I (cTnI), creatine kinase-MB (CK-MB), and b-type natriuretic peptide (BNP) plays a vital role in diagnosing cardiovascular diseases. Here we present single site-specific polyaniline (PANI) nanowire biosensors that can detect cardiac biomarkers such as Myo, cTnI, CK-MB, and BNP with ultra-high sensitivity and good specificity. Using single PANI nanowire-based biosensors integrated with microfluidic channels, very low concentrations of Myo (100 pg/mL), cTnI (250 fg/mL), CK-MB (150 fg/mL), and BNP (50 fg/mL) were detected. The single PANI nanowire-based biosensors displayed linear sensing profiles for concentrations ranging from hundreds (fg/mL) to tens (ng/mL). In addition, devices showed a fast (few minutes) response satisfying respective reference conditions for Myo, cTnI, CK-MB, and BNP diagnosis of heart failure and for determining the stage of the disease. This single PANI nanowire-based biosensor demonstrated superior biosensing reliability with the feasibility of label free detection and improved processing cost efficiency due to good biocompatibility of PANI to monoclonal antibodies (mAbs). Therefore, this development of single PANI nanowire-based biosensors can be applied to other biosensors for cancer or other diseases

    Predicting the response of a submillimeter bolometer to cosmic rays

    Get PDF
    Bolometers designed to detect. submillimeter radiation also respond to cosmic, gamma, and x rays. Because detectors cannot be fully shielded from such energy sources, it is necessary to understand the effect of a photon or cosmic-ray particle being absorbed. The resulting signal (known as a glitch) can then be removed from raw data. We present measurements using an Americium-241 gamma radiation source to irradiate a prototype bolometer for the High Frequency Instrument in the Planck Surveyor satellite. Our measurements showed no variation in response depending on where the radiation was absorbed, demonstrating that the bolometer absorber and thermistor thermalize quickly. The bolometer has previously been fully characterized both electrically and optically. We find that using optically measured time constants underestimates the time taken for the detector to recover from a radiation absorption event. However, a full thermal model for the bolometer, with parameters taken from electrical and optical measurements, provides accurate time constants. Slight deviations from the model were seen at high energies; these can be accounted for by use of an extended model

    Nanowire sensor, sensor array, and method for making the same

    Get PDF
    The present invention relates to a nanowire sensor and method for forming the same. More specifically, the nanowire sensor comprises at least one nanowire formed on a substrate, with a sensor receptor disposed on a surface of the nanowire, thereby forming a receptor-coated nanowire. The nanowire sensor can be arranged as a sensor sub-unit comprising a plurality of homogeneously receptor-coated nanowires. A plurality of sensor subunits can be formed to collectively comprise a nanowire sensor array. Each sensor subunit in the nanowire sensor array can be formed to sense a different stimulus, allowing a user to sense a plurality of stimuli. Additionally, each sensor subunit can be formed to sense the same stimuli through different aspects of the stimulus. The sensor array is fabricated through a variety of techniques, such as by creating nanopores on a substrate and electrodepositing nanowires within the nanopores

    Bolometric detectors for the Planck surveyor

    Get PDF
    The High Frequency Instrument on the NASA/ESA Planck Surveyor, scheduled for launch in 2007, will map the entire sky in 6 frequency bands ranging from 100 GHz to 857 GHz to probe Cosmic Microwave Background (CMB) anisotropy and polarization with angular resolution ranging from 9' to 5'. The HFI focal plane will contain 48 silicon nitride micromesh bolometers operating from a 100 mK heat sink. Four detectors in each of the 6 bands will detect unpolarized radiation. An additional 4 pairs of detectors will provide sensitivity to linear polarization of emission at 143, 217 and 353 GHz. We describe the fabrication process used to meet the stringent mission requirements on sensitivity, speed of response and stability
    • …
    corecore