28 research outputs found

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Rhizosphere modelling reveals spatiotemporal distribution of daidzein shaping soybean rhizosphere bacterial community

    Get PDF
    ダイズの分泌物「ダイゼイン」が根圏微生物叢を形成することを解明 --根から数ミリの土壌で働く植物特化代謝物--. 京都大学プレスリリース. 2020-01-14.Plant roots nurture a wide variety of microbes via exudation of metabolites, shaping the rhizosphere's microbial community. Despite the importance of plant specialized metabolites in the assemblage and function of microbial communities in the rhizosphere, little is known of how far the effects of these metabolites extend through the soil. We employed a fluid model to simulate the spatiotemporal distribution of daidzein, an isoflavone secreted from soybean roots, and validated using soybeans grown in a rhizobox. We then analysed how daidzein affects bacterial communities using soils artificially treated with daidzein. Simulation of daidzein distribution showed that it was only present within a few millimetres of root surfaces. After 14 days in a rhizobox, daidzein was only present within 2 mm of root surfaces. Soils with different concentrations of daidzein showed different community composition, with reduced α‐diversity in daidzein‐treated soils. Bacterial communities of daidzein‐treated soils were closer to those of the soybean rhizosphere than those of bulk soils. This study highlighted the limited distribution of daidzein within a few millimetres of root surfaces and demonstrated a novel role of daidzein in assembling bacterial communities in the rhizosphere by acting as more of a repellant than an attractant

    Fluctuations in Intracellular CheY-P Concentration Coordinate Reversals of Flagellar Motors in E. coli

    No full text
    Signal transduction utilizing membrane-spanning receptors and cytoplasmic regulator proteins is a fundamental process for all living organisms, but quantitative studies of the behavior of signaling proteins, such as their diffusion within a cell, are limited. In this study, we show that fluctuations in the concentration of the signaling molecule, phosphorylated CheY, constitute the basis of chemotaxis signaling. To analyze the propagation of the CheY-P signal quantitatively, we measured the coordination of directional switching between flagellar motors on the same cell. We analyzed the time lags of the switching of two motors in both CCW-to-CW and CW-to-CCW switching (∆τCCW-CW and ∆τCW-CCW). In wild-type cells, both time lags increased as a function of the relative distance of two motors from the polar receptor array. The apparent diffusion coefficient estimated for ∆τ values was ~9 µm2/s. The distance-dependency of ∆τCW-CCW disappeared upon loss of polar localization of the CheY-P phosphatase, CheZ. The distance-dependency of the response time for an instantaneously applied serine attractant signal also disappeared with the loss of polar localization of CheZ. These results were modeled by calculating the diffusion of CheY and CheY-P in cells in which phosphorylation and dephosphorylation occur in different subcellular regions. We conclude that diffusion of signaling molecules and their production and destruction through spontaneous activity of the receptor array generates fluctuations in CheY-P concentration over timescales of several hundred milliseconds. Signal fluctuation coordinates rotation among flagella and regulates steady-state run-and-tumble swimming of cells to facilitate efficient responses to environmental chemical signals
    corecore