5,333 research outputs found

    Angiogenesis and Vasculogenesis at 7-Day of Reperfused Acute Myocardial Infarction

    Get PDF
    Objectives 
This study is to investigate the angiogenesis and vasculogenesis at the first week of reperfused acute myocardial infarction (AMI).
Methods 
16 of mini-swines (20 to 30 Kg) were randomly assigned to the sham-operated group and the AMI group. The acute myocardial infarction and reperfusion model was created and the pig tail catheter was performed to monitor hemodynamics before left anterior descending coronary artery (LAD) occlusion, 90 min of LAD occlusion and 120 min of LAD reperfusion. Pathologic myocardial tissue was collected at 7-day of LAD reperfusion and further assessed by immunochemistry, dual immunochemistry, in-situ hybridization, real-time quantitative polymerase chain reaction and western blot. 
Results 
The infarcted area had higher FLK1 mRNA expression than sham-operated area and the normal area (all P<0.05), and the infarcted and marginal areas showed higher CD146 protein expression than the sham-operated area (all P<0.05), but the microvessel density (CD31 positive expression of microvessels/HP) was not significantly different between the infarcted area and the sham-operated area (8.92±3.05 vs 6.43±1.54) at 7-day of reperfused acute myocardial infarction (P>0.05). 
Conclusions 
FLK1 and CD146 expression significantly increase in the infarcted and marginal areas, and the microvessel density is not significantly different between the infarcted area and the sham-operated area, suggesting that angiogenesis and vasculogenesis in the infarcted area appear to high frequency of increase in 7-day of reperfused myocardial infarction. 
&#xa

    Slave particle approach to the finite temperature properties of ultracold Bose gases in optical lattices

    Full text link
    By using slave particle (slave boson and slave fermion) technique on the Bose-Hubbard model, we study the finite temperature properties of ultracold Bose gases in optical lattices. The phase diagrams at finite temperature are depicted by including different types of slave particles and the effect of the finite types of slave particles is estimated. The superfluid density is evaluated using the Landau second order phase transition theory. The atom density, excitation spectrum and dispersion curve are also computed at various temperatures, and how the Mott-insulator evolves as the temperature increases is demonstrated. For most quantities to be calculated, we find that there are no qualitatively differences in using the slave boson or the slave fermion approaches. However, when studying the stability of the mean field state, we find that in contrast to the slave fermion approach, the slave boson mean field state is not stable. Although the slave boson mean field theory gives a qualitatively correct phase boundary, it corresponds to a local maximum of Landau free energy and can not describe the second order phase transition because the coefficient a4a_4 of the fourth order term is always negative in the free energy expansion.Comment: 27 pages, 8 figures, final version for publicatio

    Single top or bottom production associated with a scalar in \gamma p collision as a probe of topcolor-assisted technicolor

    Full text link
    In the framework of the topcolor-assisted technicolor (TC2) models, we study the productions of a single top or bottom quark associated with a scalar in \gamma-p collision, which proceed via the subprocesses c\gamma -> t\pi_t^0, c\gamma -> t h_t^0 and c\gamma -> b\pi^+_t mediated by the anomalous top or bottom coupling tc\pi_t^0, tch_t^0 and bc\pi_t^+. These productions, while extremely suppressed in the Standard Model, are found to be significantly enhanced in the large part of the TC2 parameter space, especially the production via c\gamma -> b\pi^+ can have a cross section of 100 fb, which may be accessible and allow for a test of the TC2 models.Comment: 13 pages, 4 figures, comments and references adde

    An Analytical Approach to the Protein Designability Problem

    Full text link
    We present an analytical method for determining the designability of protein structures. We apply our method to the case of two-dimensional lattice structures, and give a systematic solution for the spectrum of any structure. Using this spectrum, the designability of a structure can be estimated. We outline a heirarchy of structures, from most to least designable, and show that this heirarchy depends on the potential that is used.Comment: 16 pages 4 figure

    Production of mirror fermions via eγe\gamma and epep collisions in the littlest Higgs model with T-parity

    Full text link
    One of the important features of the littlest Higgs model with T-parity, called the LHTLHT model, is that it introduces the mirror fermions, which are the T-parity partners of the standard model fermions. In this paper, we discuss production of the mirror quark associated with mirror neutrino via eγe\gamma and epep collisions. We find that, in wide range of the parameter space, the mirror quark can be copiously produced at the International e+ee^{+}e^{-} Linear Collider (ILC)(ILC) and epep collider (THERA)(THERA) experiments. The production rates of certain signal events, which are related the main two-body decay modes of the mirror quark, are also calculated.Comment: 19 pages, 11 figure

    ACBD3 functions as a scaffold to organize the Golgi stacking proteins and a Rab33b-GAP

    Get PDF
    Golgin45 plays important roles in Golgi stack assembly and is known to bind both the Golgi stacking protein GRASP55 and Rab2 in the medial‐Golgi cisternae. In this study, we sought to further characterize the cisternal adhesion complex using a proteomics approach. We report here that Acyl‐CoA binding domain containing 3 (ACBD3) is likely to be a novel binding partner of Golgin45. ACBD3 interacts with Golgin45 via its GOLD domain, while its co‐expression significantly increases Golgin45 targeting to the Golgi. Furthermore, ACBD3 recruits TBC1D22, a Rab33b GTPase activating protein (GAP), to a large multi‐protein complex containing Golgin45 and GRASP55. These results suggest that ACBD3 may provide a scaffolding to organize the Golgi stacking proteins and a Rab33b‐GAP at the medial‐Golgi

    Effects of the littlest Higgs model with T-parity on Higgs boson production at high energy e+ee^{+}e^{-} colliders

    Get PDF
    The Higgs boson production processes e+eZHe^{+}e^{-}\to ZH, e+eνeˉνeHe^{+}e^{-}\to \bar{\nu_{e}}\nu_{e}H, and e+ettˉHe^{+}e^{-}\to t\bar{t}H are very important for studying Higgs boson properties and further testing new physics beyond the standard model(SMSM) in the high energy linear e+ee^{+}e^{-} collider(ILCILC). We estimate the contributions of the littlest Higgs model with T-parity(LHTLHT model) to these processes and find that the LHTLHT model can generate significantly corrections to the production cross sections of these processes. We expect the possible signals of the LHTLHT model can be detected via these processes in the future ILCILC experiments.Comment: 9 pages, 2 figures, references adde

    Lepton flavor violation decays τμP1P2\tau^-\to \mu^- P_1 P_2 in the topcolor-assisted technicolor model and the littlest Higgs model with TT parity

    Full text link
    The new particles predicted by the topcolor-assisted technicolor (TC2TC2) model and the littlest Higgs model with T-parity (called LHTLHT model) can induce the lepton flavor violation (LFVLFV) couplings at tree level or one loop level, which might generate large contributions to some LFVLFV processes. Taking into account the constraints of the experimental data on the relevant free parameters, we calculate the branching ratios of the LFVLFV decay processes τμP1P2\tau^-\to\mu^- P_1 P_2 with P1P2P_1 P_2 = π+π\pi^+\pi^-, K+KK^+K^- and K0K0ˉK^0\bar{K^0} in the context of these two kinds of new physics models. We find that the TC2TC2 model and the LHTLHT model can indeed produce significant contributions to some of these LFVLFV decay processes.Comment: 24 pages, 7 figure
    corecore