
1 

 

  Vacancy-Induced Resistive Switching and Synaptic Behavior 

in flexible BST@Cf memristor crossbars 

 

Ze Wanga,b, Jianling Yuea,b, Chao Jianga,b,*, Isaac Abrahamsc, Yantao Yua,b, Yunxin Lid, 

Zuojuan Dua,b, Xiaozhong Huanga,b, Linling Lie, Guangyuan Wange, Hao Zhoue  

 

a Institute of Aeronautics and Astronautics, Central South University, Changsha 

410012, China 

b Key Lab for Advanced Fibers and Composites of Hnnan Province, Changsha 

410012, China 

c School of Biological and Chemical Sciences, Queen Mary University of London, 

London E1 4NS, UK 

d School of Materials Science and Engineering, Northeastern, Northeastern University, 

Shenyang 110819, China  

e
Beijing Institute of Spacecraft System Engineering, China Academy of Space 

Technology, Beijing 100094, China 

 

*Corresponding author: jiangchao@csu.edu.cn (Chao Jiang) 

 

Abstract: In this study, carbon fibers (Cf) coated with Ba0.6Sr0.4TiO3 (BST) (BST@Cf) 

were prepared by magnetron sputtering and subsequently heated in nitrogen to 

produce oxygen vacancies. BST@Cf and nitrogen-treated BST@Cf were 

cross-stacked on polyimide (PI) film to make a BST@Cf memristor. The electrical 
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properties of BST@Cf memristor were measured after being bent 3000 times. The 

device exhibits bipolar figure-of-eight (f8) hysteresis loop characteristics under 

applied voltage. The hysteresis loops narrow with increasing temperature of heat 

treatment in nitrogen, due to decrease in oxygen vacancy concentration. The 

hysteresis loops demonstrate the switching process of resistance between high 

resistance state (HRS) and low resistance state (LRS), with a maximum HRS/LRS 

ratio of 106. The switching process can be divided into two parts, corresponding to 

Schottky Emission and Fowler-Nordheim (F-N) Tunneling. It is notable that no 

electroforming voltage is required to stimulate the memristor. The constructed 

memristor was cycled successfully 1000 times and retained the LRS 787 s during 

power cut off. In addition, the device exhibited synaptic behavior including learning 

and forgetting processes, in accordance with the paired-pulse facilitation (PPF) rule. 

The use of BST@Cf in the construction of the nonvolatile memristor imparts 

flexibility to the device allowing for the possibility of wearable flexible intelligent 

memristor based electronic devices in the future. 

Keywords: Flexible memristor, Barium strontium titanate, Carbon fiber, No 

electroforming voltage, Synaptic behavior 
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1. Introduction 

The development of semiconductor technology has followed Moore's law, where 

the density of components in an integrated circuit double every 18-24 months. 

However, silicon-based materials are approaching their physical limits [1-3]. 

Memristors are considered to be promising candidates for replacing existing silicon 

based electronic components allowing for alternatives to von Neumann architecture. 

This is attributed to their excellent characteristics such as being highly scalable, with 

low power consumption, a fast response rate, excellent cyclability and possessing a 

non-volatile memory [4-14]. Moreover, memristors have very similar characteristics 

to the learning and memory processes of the human synapse. The resistance of 

memristors varies with the magnitude and duration of the applied voltage, which can 

mimic human synaptic plasticity in a single unit [15-18], while traditional electronic 

circuits require many electronic components and software programs to simulate a 

synapse. 

Flexible memristors have attracted considerable attention due to the possibility of 

constructing wearable devices. Ultra-flexible egg albumen was used by Zhou et al. 

[10] to fabricate a wearable protein based memristor array, which exhibited excellent 

memory behavior. Vu et al. [19] used MoS2 and graphene prepared by chemical vapor 

deposition (CVD) and photolithography technologies to produce a flexible memristor 

array with a high-on/off-ratio floating-gate. Burgt et al. [20] utilized polyetherimide 

(PEI) and poly(3,4-ethylenedioxythiophene) (PEDOT) to fabricate a fully-organic 
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memristor as a low-voltage artificial synapse. Indeed, most flexible memristors 

reported are based on organic films prepared using conventional lithography 

technology, which lifts off plenty of the materials during the manufacturing process 

for fabricating memristor crossbars [21], while fiber based flexible memristors can 

retain almost all coating materials.  

  Fiber based electronic devices are viewed as promising candidates for flexible 

electronic textiles (e-textiles), due to their soft, wearable, breathable and washable 

characteristics [22,23]. Carbon fiber is an outstanding electronic material due to its 

high stiffness, high tensile strength, low weight, high chemical resistance, high 

conductivity and excellent heat dissipation performance [24-26]. Zhou et al. [14] 

demonstrated carbon fiber to be an outstanding material for fabricating memristors. 

However, to date, few studies have focused on carbon fiber based flexible memristors 

[26]. Our group previously reported a flexible TiO2@Cf memristor based on carbon 

fiber, prepared via a hydrothermal method [27], which shows excellent memristor 

characteristics. While that work provided a simple path to fabricate flexible wearable 

memristors, the mechanical properties of carbon fibers are reduced due to the 

treatment at high temperature and pressure during the hydrothermal reaction.  

Barium strontium titanate (BST) is an excellent electronic material usually used as 

a tunable phase shifter, antenna and dynamic random access memory (DRAM) 

material due to its moderate relative dielectric permittivity, high tunability, low 

dielectric loss and high-quality factor [28-32]. Hwang et al. [33] reported an 
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ultra-large-scale integrated DRAM based on BST, which showed low dielectric loss 

and leakage current. The DRAM is based on the capacitive storage properties of BST, 

which must be frequently refreshed to prevent information loss. However, Li et al. [34] 

found that refreshing is not required in memristors based on BST coated silicon wafer. 

To date, there have been no reports of BST based flexible memristors.  

In this work, carbon fibers (Cf) magnetron sputtered with Ba0.6Sr0.4TiO3 (BST) were 

cross-stacked with nitrogen-treated BST@Cf on polyimide (PI) film to make a 

BST@Cf memristor. The device exhibits both digital switching and synaptic behavior, 

with the switching ratio between low resistance and high resistance states (HRS/LRS) 

reaching a maximum of 106 and significantly no electroforming voltage required to 

stimulate the memristor. 

  

2. Experimental section 

The raw carbon fibers were calcined at 500 °C for 1 h under nitrogen and then 

washed ultrasonically in ethyl alcohol and deionized water for 10 min to remove the 

polymer covering and trace impurities on the surfaces of the fibers. Ba0.6Sr0.4TiO3 was 

deposited on two sides of carbon fibers by radio frequency magnetron sputtering with 

BST target materials (Y.X Chen 99.9%) in argon atmosphere. The working pressure, 

power and time per fiber side were 0.5 MPa, 800 W and 40 min, respectively. A 

patterned mask was attached to a PI (polyimide) film (J. Kai, thickness 0.06 mm) and 

Cu electrodes deposited on the film by DC magnetron sputtering at 800 W at a 
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working pressure of 0.5 MPa for 5 min. Some of the coated fibers were calcined for 

3h at 473, 573, 673 or 773 K under flowing nitrogen to produce samples of different 

oxygen vacancy concentration. Fibers of untreated BST@Cf were placed across 

nitrogen-treated BST@Cf on PI film which was previously plated with copper 

electrodes (ca. 2.5 mm  6 mm). The end of each fiber was fixed to the copper 

electrode by conductive silver paste. Four sets of memristors were produced using the 

different nitrogen-treated BST@Cf and are denoted as H1, H2, H3 and H4, 

corresponding to nitrogen treatments at or 473, 573, 673 or 773K, respectively. The 

constructed memristor is shown schematically in Fig. 1.  

 

Fig. 1. Schematic diagram of BST@Cf memristor. 

Fiber thicknesses were measured by transmission electron microscope (TEM, FEI 

Tecnai G2 F20), while the surface morphology was observed by scanning electron 

microscopy (SEM, TESCAN MIRA3 LMU). Surface element and oxygen vacancy 

concentrations were detected by X-ray photoelectron spectroscopy (ThermoFischer 



7 

 

EscaLab Xi+). Electrical characterization was carried out using a Keithley 4200-SCS 

parameter analyzer. Synapse mimicking was tested using an Agilent B1500A 

semiconductor device analyzer. 

3. Results and discussion 

3.1 Characterization techniques 

Fig. 2(a) shows an SEM image of BST@Cf fibers, with a cross-section of a single 

fiber shown in Fig. 2(b) and crossed fibers in a constructed memristor shown in Fig. 

2(c). The diameter of the carbon fibers is about 7 m, with a smooth surface of the 

BST coating. The BST coating is too thin to be accurately measured by SEM and 

therefore for this TEM was employed, revealing a thickness of ca. 38 nm (Fig. 2(d)). 

 

Fig. 2. SEM image of (a) surface of BST@Cf, (b) transverse section of BST@Cf and (c) the 
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top-view of contact point of two cross assembled fibers with different oxygen vacancy 

concentration. (d) TEM image of BST@Cf after FIB thinning, the Au and Pt coatings are 

deposited during FIB thinning. 

Argon ion etching X-ray photoelectron survey (XPS) technology is used to test the 

element information of the BST coating. XPS spectra for Ba 3d, Sr 3d and Ti 2p are 

shown in Figs. 3(a) to 3(c), respectively. XPS spectra for O 1s of un-annealed 

BST@Cf is shown in Fig. 3(d). The Ba 3d spectra were fitted into two pairs of 3d5/2 

3d3/2 doublets with a splitting of 15.3 eV and an area ratio of 2/3 between the 

spin-orbit pairs. The lower binding species is attributed to Ba in BST, while the higher 

binding energy species is attributed to BaO or BaCO3. The results are in good 

agreement with previous studies on BST [35]. The binding energies show an initial 

decrease from 473 K to 773 but then a steady increase thereafter. Similarly, the 

fraction of the total Ba present as BST (estimated from the integrated peak areas) 

reaches a minimum in the sample at 473 K and then shows a steady increase up to 773 

K, but is never more than ca. 50%. A similar trend of binding energies is seen in the Sr 

3d and Ti 2p spectra. Interestingly while the Ti 2p spectra show only a single species 

at all temperatures, the Sr 3d spectra only show this up to 673 K, while at 773 K the 

data can be modeled on at least 3 species. The exact identity of these species is 

unknown, however the spectrum at 773 K is not unlike that presented by Rodrigues et 

al [36] after annealing BST at 1073 K, where up to four different Sr species were 

identified.    
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Fig. 3. (a) XPS spectra of the surface BST@Cf heated at four different temperatures for (a) Ba 3d, 

(b) Sr 3d, (c) and Ti 2. (d) XPS spectra of surface of un-annealed BST@Cf for O 1s. 

Fig. 4(a) to Fig. 4(d) show the fitted O 1s spectra for BST@Cf samples annealed at 

the four studied temperatures. According to the research of Fujisaki et al. [35], the 

surface of BST film is mainly BaCO3 which decarbonates into barium oxide and 

oxygen vacancy when annealed. This is consistent with the Ba 3d spectra, which 

clearly show two Ba species. The, O 1s spectra can be fitted to four peaks, which can 

be assigned according to previous work [37-41] as summarized in Table 1. The three 

lower binding energy peaks between ca. 529 eV and 533 eV are attributed to oxygen 

in the BST, BaO/BaCO3 phases and that chemisorbed on the surface as CO3-, which 

we collectively denote here as (O1). The highest binding energy peak between 533.83 

eV to 534 is attributed to the presence of oxygen defects (O2) [38,39]. It is evident 

from the integrated areas that the O2/(O1+O2) decreases with increasing annealing 
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temperature, indicating that defects formed during the sputtering process are 

increasingly eliminated with increasing annealing temperature. This is consistent with 

the increase of binding energy with increasing annealing temperature seen in the Ba 

3d, Sr 3d and Ti 2p spectra. 

 

Fig. 4. O 1s X-ray photoelectron spectra for BST@Cf annealed at (a) 537 K, (b) 637 K, (c) 737 K 

and (d) 837 K. 

Table 1: O1s X-ray photoelectron spectral assignments and defect oxygen percentages (%O2) for 

un-annealed BST@Cf and BST@Cf annealed at 537 K, 637 K 737 K and 837 K. 

 Un-annealed 

BST@Cf 

473K 573K 673K 773K 
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O1 binding 

energies 

(eV) 

O2 binding 

energies 

(eV) 

531.00 

532.23 

533.00 

 

533.83 

530.13 

531.31 

532.13 

 

533.33 

530.19 

531.73 

532.80 

 

533.31 

529.90 

530.68 

531.64 

 

533.00 

530.73 

531.61 

532.47 

 

533.59 

O2/(O1+O2) 21.98% 20.84% 14.53% 11.66% 9.03% 

3.2 Electrical properties  

Electrical properties of BST@Cf were measured after 3000 times bent. As shown in 

Fig. 1, the un-annealed BST@Cf was connected to the top electrode while the 

annealed fibers were connected to the grounded bottom electrode. Current-voltage 

(I-V) curves for the four studied devices are shown in Fig. 5 on logarithmic scales 

with the linear scale plots inset. In each case, sweep limits were determined by initial 

experiments, gradually increasing the sweep width. All four devices show bipolar 

figure-of-eight (f8) type hysteresis loops, typical characteristics of memristors. Each 

of the logarithmic plots can be divided into three stages. Taking that for device H1 as a 

representative example, when the voltage varies from 0 V to -1.5 V, the current 

increases gradually to 10-4 A, which defines the SET process. As the sweep reverses 

from -1.5 V to 0 V, the current decreases as the voltage approaches 0 V. defining the 

RESET process. When the voltage goes from -1.5 V to 1.5 V, the current retains high 

level except for the zero point, which is attributed to the equipment. Fig. 5(e) 
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illustrates the variation of resistance values during this cycle. During the SET process, 

the resistance switches from the high-resistance state (HRS) to the low-resistance state 

(LRS). As the voltage sweeps from -1.5 V to 1.5 V, the resistance remains at the LRS, 

confirming the device has the capability of maintaining the LRS in the power off state. 

During the RESET process, the resistance is switched back to the HRS. It is worth 

noting that unlike most memristors, which require extra large voltage as 

electroforming stimuli [3-6], there are no electroforming voltage required over the 

period of the switching process.  

The observed electrical behavior can be explained by the motion of oxygen 

vacancies and interstitials (VO and Oi). The un-annealed BST@Cf possess high 

concentrations of oxygen defects due to the sputtering process. As seen in the XPS 

results, the defect concentration decreases with increasing annealing temperature. 

Therefore, a concentration gradient in defects is generated between the two cross 

connected fibers and this gradient increases with increasing annealing temperature. 

Diffusion of VO occurs as a result of the electric field [42, 43], with the vacancies 

possessing an effective positive charge attracted to the negative electrode, while Oi 

with an effective negative charge are attracted to the positive electrode. Conductive 

filaments gradually form between the two fibers during the SET process, which 

causes the device to attain the LRS of device. During the RESET process, a reverse 

voltage drives the defects in the reverse directions back breaking the conductive 

filament and leading to the HRS. The areas in the figure-of-eight loops of the I-V 
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plots are an indication of the strength of the filaments, with narrow loops indicating 

weaker filaments. In the case of devices H1 to H3 wide loops are seen, while the loop 

for device H4 during the SET process is narrow and wide during the RESET process. 

This is likely related to the larger vacancy concentration gradient between the two 

fiber types in device H4, with weak filaments produced in during the SET process. 

High defect concentrations increase the possibility and rate of defect migration, 

leading to stronger conductivity filaments. Hence, device H4 with lowest defect 

concentration in the annealed fiber needed higher potential (a larger maximum 

potential was required) to build conductive filaments. In contrast, for device H1 where 

defect concentration was high causes that the cut-off voltage required was small and 

the hysteresis loops were wide.  
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Fig. 5. Logarithmic scale I-V curves for devices (a) H1, (b) H2, (c) H3 and (d) H4, with linear scale 

plots inset; (e) resistance-voltage (R-V) curve for device H1. 

To test the cycling characteristics of devices H1-H4, bias potentials of -5 V, +5 V 

and were used as SET, RESET and voltages, respectively. The switching current of H1 

to H4 of HRS and LRS during cycling test are show in Fig. 7(a) to Fig. 7(d). The 

number of times each group of devices can be cycled is counted in the Fig. 6(a). The 

results demonstrate that the cyclability of H1 to H4 devices decreases in the order of 
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increasing annealing temperature. The HRS and LRS values for device H1 are plotted 

as a function of cycle number in Fig. 6(b). This device shows good cyclability during 

1000 cycles. During cycling, oxygen defects are gradually eliminated through 

vacancy-interstitial recombination [44]. This reduction in defect concentration on 

continued cycling is likely to be the main cause of failure in the BST@Cf memristors. 

As a result, the defect concentrations of devices with fibers with low initial 

concentrations will deplete faster compared to those with higher defect concentrations, 

causing them to lose effectiveness after fewer cycles. In contrast, it is more difficult to 

exhaust the supply of defects in devices with high initial defect concentrations, 

resulting in extended cycling durability. 

 

Fig. 6. (a) Maximum cycle numbers achieved for devices H1 to H4, with pulse sequence inset; (b) 

resistance values for the HRS and LRS of device H1 over 1000 cycles. 
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Fig. 7. The switching current of (a) H1, (b) H2, (c) H3, (d) H4 of HRS and LRS during cycling 

test. 

One of the most important characteristics of memristors is memory retention after 

the SET process even in the power off state. In this study, memory retention was 

measured for device H1 (Fig. 8). An initial potential of 1 V was to test the original 

state of the device (note that in this device, the un-annealed fibers were connected to 

the top electrode). A potential of +5 V was then applied as the SET voltage and power 

then immediately cut. After about 787 seconds a potential of 1 V was applied as a read 

voltage. As Fig. 8 demonstrates, the current of original state is ca. 10-9 A and changes 

to 10-6 A during the SET process, causing the device to switch from the HRS to the 

LRS. After the SET and cut off processes, the resistance increases slightly to 10-7 A, 

but is still in the LRS state. The memory retention test illustrates the potential of 
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BST@Cf memristors for application in electronic devices required to maintain data 

during periods of power failure. 

 

Fig. 8. Memory retention characteristics of device H1 during power cut off for 786 s, showing 

voltage (lower) and resistance (upper) curves. 

3.3 Interpretation theory of resistance transition process 

  There are several theoretical models proposed to explain the resistive switching 

process in memristors, such as Schottky emission, Fowler-Nordheim (F-N) tunneling, 

Poole-Frenkel emission and space-charge-limited conduction [45-47]. Among them, 

Schottky emission and F-N tunneling are commonly used to describe the resistance 

switching processes of perovskite-oxide memristors. The two theories indicate that 

current and voltage obey the relations:  

         ln 𝐼 ∝ √𝑉            (1) 

and 

       (ln
I

V
∝ √V)           (2)  
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during the SET process, respectively (where I and V are current and voltage, 

respectively). The experimental I-V data for device H1 were fitted with MATLAB 

software based on equations (1) and (2) and the fitting results are shown in Fig. 9(a) 

and Fig. 9(b). The SET process can be divided into two parts: 0 V to -1.5 V and -1.5 V 

to -2.5 V. Fig. 9(c) and Fig. 9(d) show the transport model of carriers in these two 

continuous processes. During the 0 V to -1.5 V region, the plot of ln(I) vs. √𝑉 is 

reasonably well fitted to a straight line with slope of 2.61, which means the process 

can be attributed to Schottky Emission. According previous researches [27,46], the 

BST@Cf is equivalent to two head-to-head Schottky diodes. The two diodes operate 

in opposite regime: the diode connected with the anodic is forward biased while the 

diode connected with the cathode electrode is reversely biased. In Schottky emission, 

under negative potential oxygen vacancies are driven to the positive electrode by the 

electric field and accumulate at the interface between BST and carbon fiber (Cf). This 

occurs over the potential range 0 to -1.5 V and leads to the depleted region W1 

decreasing gradually. During the increasing the voltage from -1.5 V to -2.5 V (Fig. 5d), 

the depletion region decreases to W2 and allows electrons to tunnel from Cf to BST 

through the thin depletion region i.e. F-N tunneling. As can be seen in Fig. 9(b), over 

the range -1.5 V to -2.5 V, the plot of ln(I/V) vs. V-1 is linear with a slope of -2.44, 

indicating that F-N Tunneling is the dominant carrier transport process in this voltage 

range (Fig. 9(d)). (Electron affinity of BST (ХBST) and work function of carbon fiber 

(Wcf) can be referred to the previous work of Scott [49] and Hu [27], respectively.)    
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Fig. 9. Fits to (a) Eq. (1) (Schottky emission) and (b) Eq. (2) (F-N tunneling) for current voltage 

data for device H1 over the respective voltage ranges 0 to -1.5V and -1.5 to -2.5 V. Schematics 

showing carrier transport processes during (c) Schottky emission and (d) F-N tunneling. EC, Eg 

and EV represent conduction band, forbidden band and valence band, respectively. 

3.4 Synaptic simulation 

  Fig. 10(a) shows a schematic of a biological synapse. When continuous stimuli are 

applied to the synapse, the postsynaptic response of the later stimuli is higher than that 

of the initial one. This mechanism is called paired-pulse facilitation (PPF) [50,51], 

which is related to learning strengthened processes. When two stimuli are applied to a 

synapse, the second stimulus causes the presynaptic to release higher concentrations 

of ionic species (Na+, Ca2+, Mg2+, etc.). As Fig. 10(b) illustrates, on continuous 
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sweeping between 0 V and +5 V voltage for 10 cycles, the current increases as the 

number of cycles increases. We applied cyclic pulses to H1, the pulse amplitude, 

duration time and interval time are 1V, 0.001s and 0.001s. The performance of 

BST@Cf memristor is analogous to a biological synapse when applied to continuous 

voltage. The cyclic results are shown in Fig. 10(d). The current of the device increases 

with successive voltage and eventually reaches a limit., the current continuously 

increases obeying the PPF law:  

                PPF =
(𝐺2−𝐺1)

𝐺1
× 100%         

(3) 

where 𝐺1 and 𝐺2 are the conductance of the earlier and later pulses. Analysis of the 

data for device H1 reveals the maximum PPF can reach 5.8%, and minimum PPF is 

about 0.36%. The PPF result demonstrating that the BST@Cf memristor has the 

potential to mimic synapses. 
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Fig. 10. (a) Schematic diagram of a biological synapse; (b) Change of current on 10 consecutive 

sweeps from 0 to +1.5 V. (c) The pulse of PPF test. (d)The gradually increasing current of H1 

under continuous pulses. 

4. Conclusions 

  In this study, BST was successfully used as a memory layer to construct a flexible 

memristor based on carbon fibers. Annealing the magnetron sputtered carbon fibers at 

different temperatures led to BST coatings containing different defect concentrations. 

Devices were constructed using cross connected BST coated fibers of different defect 

concentration. After being bent 3000 times, the electrical resulting of BST@Cf 
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memristors exhibited typical bipolar f8 hysteresis loops. The hysteresis loops 

demonstrate the switching process of resistance between high resistance state (HRS) 

and low resistance state (LRS), with a maximum HRS/LRS ratio of 106. 

The switching process in BST@Cf memristors can be divided into two parts, 

which are well explained by Schottky emission and F-N tunneling. BST@Cf 

memristors with fibers containing high defect concentrations gradient showed 

excellent cyclability and memory retention behavior during power cut off. 

Additionally, the BST@Cf memristors obey the PPF law due to conductance 

increasing with increasing number of voltage cycles mimicking the strengthened 

learning process of biological synapses. Mounted on a flexible polymer BST@Cf 

based memristors have potential applications in wearable flexible electronic devices.  
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