42 research outputs found

    Photoelectric Properties of DSSCs Sensitized by Phloxine B and Bromophenol Blue

    Get PDF
    Phloxine B and bromophenol blue as the sensitizers of dye-sensitized solar cells were investigated via UV-Vis spectra, FT-IR spectra, fluorescence spectra, and current-voltage characteristics. The frontier molecular orbital, vibration analysis, and the first hyperpolarizability were calculated with DFT/6-31G(d). The dipole moment, light harvesting efficiency (LHE), and larger absolute value of driving force of electron injection (ΔGinject) were also discussed. The calculated results were compared with the experimental results of phloxine B and bromophenol blue. It was found that, compared with bromophenol blue, bigger dipole moment of phloxine B results in larger open circuit voltage (Voc) according to the correlation between dipole moment and Voc. At the same time, for configuration of phloxine B, it has higher LHE and ΔGinject, which are helpful to enhance the abilities of absorbing sunlight and electron injection. Therefore, higher LHE and ΔGinject for phloxine B produced a larger value of Jsc

    Photoactive Layer of DSSCS Based on Natural Dyes: A Study of Experiment and Theory

    Get PDF
    Three natural dyes (Forsythia suspensa, Herba Violae, and Corn leaf) have been investigated as potential sensitizers for dye-sensitized solar cells. UV-vis absorption spectra reveal that three natural dyes mainly contain the compound of pheophytin a. Among three DSSCs, the highest photo electronic conversion efficiency η is 0.96% with open circuit voltage (VOC) of 0.66 V, short circuit current density (ISC ) of 1.97 mA cm−2, and fill factor (ff) of 0.74. Theoretical time-dependent density functional theory and charge difference density are used to explore the nature of excited states. Results demonstrate that the first state is an intramolecular charge transfer (ICT) state, and electron injection could occur owing to the thermodynamically driving force

    Theoretical Investigation on Photophysical Properties of Triphenylamine and Coumarin Dyes

    No full text
    Organic molecules with donor and acceptor configures are widely used in optoelectronic materials. Triphenylamine dyes (TPCTh and TPCRh) are investigated via density functional theory (DFT) and time-dependent DFT. Some microscopic parameters related to light absorption and photoelectric formation are calculated to interpret the experimental performance in dye-sensitized solar cells (DSSCS). Considering that coumarin derivatives (Dye 10 and Dye 11) have good donor and acceptor structures, they also have a COOH group used as an anchoring group to connect with semiconductors. Thus, the two dyes’ photophysical and photoelectric properties are analyzed to estimate the performance and application in DSSCs

    Intermolecular charge and energy transfer in neurosporene and chlorophyll a derivative complex

    No full text
    Dye-sensitized solar cells using a chlorophyll a derivative (PPB a der.) as the sensitizer and carotenoids having different conjugation lengths as redox spacers was studied experimentally. In this Letter, the excited state properties of the neurosporene & PPB a der. complex are investigated theoretically with quantum chemistry method. The 2D real space analysis with the transition density matrix reveals that some excited states are locally excited states, and some is the intermolecular charge transfer (ICT) state. The 3D real space analysis reveals: (1) that the orientation and the strength of the dipole moment from transition density, and (2) the orientation and result of ICT in Neurosporene & PPB a der. complex from charge difference density. (c) 2005 Elsevier B.V. All rights reserved

    Modification of NFA-Conjugated Bridges with Symmetric Structures for High-Efficiency Non-Fullerene PSCs

    No full text
    As electron acceptors, non-fullerene molecules can overcome the shortcomings of fullerenes and their derivatives (such as high cost, poor co-solubility, and weak light absorption). The photoelectric properties of two potential non-fullerene polymer solar cells (PSCs) PBDB-T:IF-TN (PB:IF) and PBDB-T:IDT-TN (PB:IDT) are studied by density functional theory (DFT) and time-dependent DFT (TD-DFT). Based on the optimized structure of the ground state, the effects of the electron donor (D) and electron acceptor (A) (D/A) interfaces PBDB-T/IF-TN (PB/IF) and PBDB-T/IDT-TN (PB/IDT) are studied by a quantum-chemical method (QM) and Marcus theory. Firstly, for two non-fullerene acceptors (NFAs) IF-TN and IDT-TN, the NFA IDT-TN has better optical absorption ability and better electron transport ability than IF-TN. Secondly, for the D/A interfaces PB/IF and PB/IDT, they both have high optical absorption and electron transfer abilities, and PB/IDT has better optical absorption and lower exciton binding energy. Finally, some important parameters (open-circuit voltage, voltage loss, fill factor, and power conversion efficiency) are calculated and simulated by establishing the theoretical model. From the above analysis, the results show that the non-fullerene PSC PB:IDT has better photoelectric characteristics than PB:IF

    Spectra and Charge Transport of Polar Molecular Photoactive Layers Used for Solar Cells

    No full text
    The ground state structures, HOMO and LUMO energy levels, band gaps ΔH-L, ionization potentials (IP), and electron affinities (EA) of three types of copolymer P1 and its derivatives P2, P3, and PBDT-BTA were investigated by using density functional theory (DFT) with B3LYP and 6-31G (d) basis set. On the base of optimized structures of ground states, their absorption spectra were obtained by using TD-DFT//Cam-B3LYP/6-31 G (d). Research shows that with the increasing conjugated units, HOMO energy levels increased, LUMO energy levels decreased, and band gaps decreased gradually. Moreover, their ionization potentials decreased and electron affinities increased along with the increase of conjugated chains, and absorption spectra red-shifted. In addition, the side chain has a significant effect on the properties of ground and excited states. In order to investigate the influence of conjugated units and side chain on the charge transport, their hole and electron reorganization energies were calculated, and the results indicated that Pb have a good hole transport capability. Considering the practical application, the HOMO and LUMO energy levels, band gaps, and absorption spectra under external electric field were studied, and the results proved that the external electric field has an effect on the optical and electronic properties

    Fullerene-Based Photoactive Layers for Heterojunction Solar Cells: Structure, Absorption Spectra and Charge Transfer Process

    No full text
    The electronic structure and optical absorption spectra of polymer APFO3, [70]PCBM/APFO3 and [60]PCBM/APFO3, were studied with density functional theory (DFT), and the vertical excitation energies were calculated within the framework of the time-dependent DFT (TD-DFT). Visualized charge difference density analysis can be used to label the charge density redistribution for individual fullerene and fullerene/polymer complexes. The results of current work indicate that there is a difference between [60]PCBM and [70]PCBM, and a new charge transfer process is observed. Meanwhile, for the fullerene/polymer complex, all calculations of the twenty excited states were analyzed to reveal all possible charge transfer processes in depth. We also estimated the electronic coupling matrix, reorganization and Gibbs free energy to further calculate the rates of the charge transfer and the recombination. Our results give a clear picture of the structure, absorption spectra, charge transfer (CT) process and its influencing factors, and provide a theoretical guideline for designing further photoactive layers of solar cells

    Ascertaining p,p '-Dimercaptoazobenzene Produced from p-Aminothiophenol by Selective Catalytic Coupling Reaction on Silver Nanoparticles

    No full text
    Combining experiment and theory, evidence from surface-enhanced Raman scattering (SERS) were obtained for p,p'-dimercaptoazobenzene (DMAB) produced from p-aminothiophenol (PATP) by selective catalytic coupling reaction on silver nanoparticles. The time-dependent SERS spectra of PATE are consistent with the calculated SERS spectra of DMAB), which is the direct evidence or the production of DMAB from PATE by selective catalytic coupling reaction on silver nanoparticles. The so-called "b(2) modes" of PATP is the -N=N- related vibrational modes of DMAB. The silver nanoparticles could be assembled together to form different size of aggregates with different concentration of PATE solution. When the concentration of Ag nanoparticle (the radius 40 nm) in colloid is 35 pM, the time-dependent SERS of DMA B reveals that the better experimental conditions for observing SERS signals of DMA B are (1) concentration of PATE is around 5 x 0(-6) M in which condition the aggregates consist with about 3-5 silver nanoparticles. which are not too big and suitable for SERS measurement, and (2) the Raman signal will be strongest at the thne delay about 27 min for this concentration. By analyzing the symmetry of strong enhanced vibrational modes, it is derived that all ask strong vibrational modes are mostly enhanced by surface plasmons (electromagnetic field). The SERS enhancement calculated with finite-difference time-domain method is on the order of |M|(4) = 9.0 x 10(8) in junctions of AgNPs at 632.8 nm, where |M|(4) = E-loc/E-in and E-loc and E-in are local and incident electric fields, respectively. The total chemical enhancements, including static chemical and resonant enhancements, are on the order of 10(3)

    An Experimental and Theoretical Investigation of the Electronic Structures and Photoelectrical Properties of Ethyl Red and Carminic Acid for DSSC Application

    No full text
    The photoelectrical properties of two dyes—ethyl red and carminic acid—as sensitizers of dye-sensitized solar cells were investigated in experiments herein described. In order to reveal the reason for the difference between the photoelectrical properties of the two dyes, the ground state and excited state properties of the dyes before and after adsorbed on TiO2 were calculated via density functional theory (DFT) and time-dependent DFT (TDDFT). The key parameters including the light harvesting efficiency (LHE), the driving force of electron injection ( Δ G inject ) and dye regeneration ( Δ G regen ), the total dipole moment ( μ normal ), the conduction band of edge of the semiconductor ( Δ E CB ), and the excited state lifetime (τ) were investigated, which are closely related to the short-circuit current density ( J sc ) and open circuit voltage ( V oc ). It was found that the experimental carminic acid has a larger J sc and V oc , which are interpreted by a larger amount of dye adsorbed on a TiO2 photoanode and a larger Δ G regen , excited state lifetime (τ), μ normal , and Δ E CB . At the same time, chemical reactivity parameters illustrate that the lower chemical hardness (h) and higher electron accepting power (ω+) of carminic acid have an influence on the short-circuit current density. Therefore, carminic acid shows excellent photoelectric conversion efficiency in comparison with ethyl red

    Experimental and theoretical investigation of the photoelectrical properties of tetrabromophenol blue- and bromoxylenol blue-based solar cells

    No full text
    Tetrabromophenol blue and Bromoxylenol blue as the sensitizers of dye-sensitized solar cells (DSSCs) are measured in experiments. In order to better understand the photoelectrical properties of the two dyes, we obtain the UV-Vis spectra, fluorescence spectra, and current-voltage characteristics. The frontier molecular orbital, energy levels, the first hyperpolarizability, the first hyperpolarizability density, and molecular electrostatic potential are calculated with density functional theory (DFT) and time-dependent DFT (TDDFT). The critical factors including the light harvesting efficiency (LHE (Tetrabromophenol blue for 0.0284 and Bromoxylenol blue for 0.0290), the driving force of electron injection (ΔGinject), x-axis direction dipole moment (μnormal), the conduction band of edge of the semiconductor (ΔECB), and the excited-state lifetime (τ)) are computed, which have a close connection to the short-circuit current density (Jsc) and open-circuit voltage (Voc). The results show that the Jsc (0.09 mA/cm2) and Voc (0.39 V) of Tetrabromophenol blue have larger values, which can be explained by a larger absolute value of ΔGinject, absolute value of μnormal, τ, and ΔECB. Therefore, Tetrabromophenol blue displays well photoelectric conversion efficiency compared with Bromoxylenol blue.Published versio
    corecore