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Three natural dyes (Forsythia suspensa, Herba Violae, and Corn leaf) have been investigated as potential sensitizers for dye-
sensitized solar cells. UV-vis absorption spectra reveal that three natural dyes mainly contain the compound of pheophytin a.
Among three DSSCs, the highest photo electronic conversion efficiency 𝜂 is 0.96% with open circuit voltage (𝑉OC) of 0.66V, short
circuit current density (𝐼SC) of 1.97mA cm−2, and fill factor (ff) of 0.74. Theoretical time-dependent density functional theory and
charge difference density are used to explore the nature of excited states. Results demonstrate that the first state is an intramolecular
charge transfer (ICT) state, and electron injection could occur owing to the thermodynamically driving force.

1. Introduction

Since the initial report on dye-sensitized solar cells (DSSCs)
by Hagfeldt and Graetzel [1], much effort has been devoted
toward designing and synthesizing metal-free photosensitiz-
ers to improve sunlight harvesting efficiency and yield effi-
cient charge separation [2–5]. Most of the efficient DSSCs are
sensitized with the dyes having ruthenium based complexes
that have been shown to operate with power conversion
around 10% using nanoporous TiO

2

electrodes [6]. However,
due to the high cost of ruthenium complexes and the long
term unavailability of these noble metals [7], there is a need
to search for alternative photosensitizers for the use in TiO

2

-
based photovoltaic devices.

Recently, several studies have focused on the natural dyes
as DSSCs sensitizers [8–15] because the natural dyes could be
extracted from flowers, vegetables, wood, seed, fruits, and so
forth, by using minimal chemical procedures. Several natural
pigments such as anthocyanin [10–12], chlorophyll [13],
tannin [14], and carotene [15] have been used as sensitizer in
DSSCS, and the highest photoelectronic conversion efficiency
𝜂 based on natural dyes is around 2% [10, 11]. In this study, we
extract three dyes from natural plants of Forsythia syspensa,

Herba Violae, and Corn leaf to use as DSSCS and achieve the
highest efficiency 𝜂 = 0.96% with a good fill factor of 0.74
under AM 1.5 using a density of power 100mW/cm2.

2. Methods

Forsythia suspensa (Fs), Herba Violae (Hv), and Corn leaf
(Cl) were collected fresh and kept in a vacuum furnace by
controlling temperature at 70∘C to remove the moisture. The
dried samples were crushed in a mortar to make them into
powder, and then powdered samplesweremixed into ethanol,
and the concentration of three samples is 1 g/mL.After extrac-
tion for about a week under the opaque condition, further
purification of the extracts was avoided in order to achieve
efficient sensitization using simple extraction procedures.
The structure of DSSCs is mainly composed of electrode,
dyes, and electrolyte solution. The elaborated preparation
procedure is listed as follows: (a) the TiO

2

electrode was
prepared; add 10mL isopropyl titanate to water, and keep
hydrolysis for 3 h; then add HNO

3

and HAC to the solution,
under 80∘C; the mixed solution was stirred until it became
transparent clear blue; later, at 200∘C hydrothermal reaction
was carried on for 12 h. After cooling and spin steaming,
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centrifugal, terpineol ethyl, and cellulose were added to the
ball grinder; the paste was prepared completely by ball mill,
rotary steam, and three-rollmill. (b)The application of screen
printing technology was used, which printed the TiO

2

paste
to the clean surface of conductive glass, and the active area
of cell was 0.16 cm2; after ethanol bath and drying, the anode
electrodes were sintered, and then the anode electrodes were
treated in TiCl

4

solution. In the next process, the anode
electrodes were sintered as well, and after the processing, the
anode immediately was removed after the natural cooling to
80∘C, and the anode electrodes were soaked in the natural
dye without light for 24 h. (c) The anode electrode and the
platinum plating counter electrode were assembled into the
cell, in the middle of the two electrodes, and the electrolyte
solution was added (0.5mol/L LiI, 0.05mol/L I2 TBP, and
GUSCN were included). UV-vis spectra were measured
with TU-1900 spectrometer (Beijing, China), and the FT-IR
spectraweremeasuredwith FT-IR 360 spectrometer (Nicolet,
Madison, WI, USA). Solar energy conversion efficiency
measurements were done with a solar simulation instrument
(Pecell-15, Japan), and light intensity was adjusted via a
reference standard Si-solar solar cell at 1 sun light intensity
of 100mWcm−2.Theoretically, the ground state optimization
and absorption simulation were done with DFT/B3LYP [16–
19] and TD-DFT/CAM-B3LYP [20, 21] using same basis set
6-31G(d). For comparison, M062x function was also used.
All quantum chemical calculations were done with Gaussian
09 [22]. Quantum chemical calculations [23–27] and three-
dimensional (3D) real-space analyses [25, 26] were used to
study the relationship between structures and the optical
properties, which has been used to explain charge transfer
and excited states properties of organic system.

3. Results and Discussion

UV-vis absorption spectra of Forsythia suspensa (Fs), Herba
Violae (Hv), and Corn leaf (Cl) in ethanol were shown in
Figure 1(a), and for comparison, simulated absorption spec-
trum was shown in Figure 1(b), and the calculated data were
listed inTable 1. It is found that the absorption spectra of three
dyes cover the two absorption bands from 400 nm to 700 nm,
and they display a strongest absorption band (666–669 nm)
that corresponds to the red absorption band (666 nm) of
pheophytin a [28, 29]. The calculation reproduces the two
absorption spectra of dyes (see Figure 1(b)), and the first
absorption in ethanol is found to be 595.51 nm (𝑓 = 0.17)
by using TD-CAMB3LYP/6-31G(d)//B3LYP/6-31G(d), which
makes a red shift of 50 nm compared with the first absorption
peak with TD-M062x/6-31G(d)//B3LYP/6-31G(d) (𝜆max =
545 nm).

The transition energy and oscillator strength were listed
in Table 1. As shown in Table 1, it is found that the excited
state is composed of electron transition from HOMO to
LUMO with the weight of 0.62279. It is very important
for DSSCS to perform well with energy match; that is, the
HOMO energy level should be laid below the redox couple,
and LUMO energy level should be higher than that of TiO

2

semiconductor.Therefore, the energy levelmatch is necessary

Table 1: Calculated transition energies and oscillator strengths TE
(OS) and CI coefficients for the six excited states.

States TE (OS) CI coefficients Cal.[a]

1 595.51 (0.1700) (0.62279) H → L 545 nm
2 508.40 (0.0332) (0.58102) H − 1 → L
3 357.08 (0.8698) (0.54625) H → L + 1
4 352.01 (0.9375) (0.53325) H − 1 → L
5 335.49 (0.2486) (0.61823) H − 2 → L
6 316.61 (0.0088) (0.50112) H − 5 → L
[a]Data from TD-M062x/6-31G(d)//B3LYP/6-31G(d).

Table 2: Current-voltage characteristics of Forsythia suspensa (Fs),
Herba Violae (Hv), and Corn leaf (Cl).

𝑉OC (V) 𝐽SC (mA/cm) FF Eff./%
Fs 0.64 2.01 0.70 0.90
Hv 0.66 1.97 0.74 0.96
Cl 0.61 0.99 0.78 0.47

for the optical electronic transfer and electron recovery in
the system of solar cells. Comparison results show that the
HOMO energy level is found to be −5.21 eV, which is lower
than that of HOMO of the redox couple I−/I3− (−4.8 eV
[28, 29]), which means that excited dye can obtain electron
from the redox couple to recovery; and LUMO energy level
is −2.736 eV, which is above the conduction band of TiO

2

.
The energy gap is 2.474 eV, and exciton binding energy can
be obtained from the difference values between excitation
energy and energy gap, which are 0.392 eV and 0.199 eV
through the two functional evaluations of CamB3LYP and
M062x, respectively.

Fourier transform infrared spectrum of three dyes in the
range of 400–4000 cm−1 was measured experimentally, as
shown in Figure 2(a). For comparison, a simulated spectrum
in ethanol was also calculated theoretically (see Figure 2(b)).
Figure 2(a) shows that the three dyes have similar shape and
peak site of IR, and strong spectra of IR are found to be 3000–
4000 cm−1 and 1000–2000 cm−1, that is, 1107.15, 1398.74,
1634.78, 2359.23, 2924.52, and 3420.00 cm−1, respectively.
Figure 2(b) shows that there is a peak site of 3520 cm−1, and it
is a vibration of N-H, as supported by the vibration analysis
in Figure 3. From 3000 to 3200 cm−1 region, the vibration of
3072 cm−1 comes from the stretching vibration of C-H on
polyene hydrocarbon (see Figure 3).The stretching vibrations
of C=O on the thiophene units and carboxyl group are
1752 cm−1 and 1795 cm−1, respectively. The sharp and strong
absorption peaks for C=C stretching mode and the out of
plane of C-H bending mode were 1660 cm−1 and 952 cm−1,
respectively.

Current-voltage curves for Fs (black line), Hv (red line),
and Cl (blue line) were shown in Figure 4, respectively.
Table 2 shows 𝐼-𝑉 (current-voltage) characteristics of the
DSSCs sensitized with three dyes, which are composed of
short circuit current density (𝐼SC), open circuit voltage (𝑉OC),
fill factor (ff), and energy conversion efficiency (𝜂). The
DSSCs sensitized with Herba Violae dye showed conversion
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Figure 1: Absorption spectra of experiment (a) and simulation (b).
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Figure 2: Experimental and theoretical IR spectra (a) and (b).

efficiency (𝜂) of 0.96%, with open circuit voltage (𝑉OC) of
0.66V, short circuit current density (𝐼SC) of 1.97mA cm−2,
and fill factor (ff) of 0.74. The DSSCs sensitized with Fs
showed conversion efficiency (𝜂) of 0.90%, and the open
circuit voltage of Fs is smaller than that ofHv, but short circuit
current density of Fs is larger than that of Hv. For three solar
cells, the values of 𝑉OC and 𝐼SC for Cl are both smaller than
the two other cells, and its conversion efficiency (𝜂) is 0.47.

To better study the excited states properties of the dye,
the 3D real-space analysis is employed, which success-
fully explained the excited states properties of oligomers
and polymers [25–27]. The 3D real-space analysis was

shown in Figure 5, and density of molecular orbital for
HOMO and LUMO was shown in supporting materials
Figure S1 in Supplementary Material available online at
http://dx.doi.org/10.1155/2015/139382. From Figure S1, it is
found that electron density distributions of the HOMO and
LUMO are mainly located on the pheophytin body and
there is no electron density under the polyene hydrocarbon,
which are supported by charge difference density (CDD)
analysis (see Figure 5). As shown, CDD shows that the excited
state only occurs on the pheophytin body (where red and
green represent the electron and hole, resp.). The state is an
intramolecular charge transfer state (ICT) because the holes
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Figure 4: Current-voltage curve for FS (block line), Hv (red line),
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are located on the central rings, and electron is transferred
into outside area. It is worth nothing that the red electrons
are located on the attaching group C=O of pheophytin,
and the increasing electron density upon the surface of
semiconductor should be an important condition for the
electron injection. The density of second state is similar to
the first excited state. S3 and S4 are located excited states,
and there is no electron upon attaching group. At the same
time, the S6 excited state is also a located excited state (which
is different with S3 and S4), and Figure 5 shows that excited

electron and hole pair almost only appear upon the attaching
group.

For DSSCs, excited electron should be quickly injected
from the discontinuous energy level of dyes into the CB of the
semiconductor titanium dioxide. Thermodynamically, driv-
ing force of the electron injection process can be described as
the difference between excited state oxidation potential 𝐸oxex
and CB edges. From Rehm andWeller equation [30], 𝐸oxex can
be calculated as follows:

𝐸
ox
ex = 𝐸

ox
gr − 𝐸00, (1)

where 𝐸oxex and 𝐸
ox
gr are the excited and ground state oxidation

potentials and 𝐸
00

is the electronic transition energy, and the
ground state oxidation potential 𝐸oxgr is computed from the
HOMO energy. The value of 𝐸oxex is calculated to be −0.82V
which ismore negative than theCB edge of TiO

2

(0.5 V versus
normal hydrogen electrode (NHE)) [31–33], and electron
injection is more easy to occur owing to the bigger difference
between the excited state oxidation potentials and CB edge.

4. Conclusions

Three DSSCs based on natural dyes extracted from Forsythia
suspensa, Herba Violae, and Corn leaf have been studied,
and optical electronic results show that the highest photo-
electronic conversion efficiency 𝜂 = 0.96% with open circuit
voltage (𝑉OC) of 0.66V, short circuit current density (𝐼SC) of
1.97mA cm−2, and fill factor (ff) of 0.74. TD-DFT calculations
show that the objected system has wide absorption region,
and charge difference density demonstrated that there is
an ICT state for the S1 state and provided the orientation
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Figure 5: Charge difference density for calculated states.

of charge transfer. Electron injection is thermodynamically
permitted.
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