2,831 research outputs found

    A Multi-view Impartial Decision Network for Frontotemporal Dementia Diagnosis

    Full text link
    Frontotemporal Dementia (FTD) diagnosis has been successfully progress using deep learning techniques. However, current FTD identification methods suffer from two limitations. Firstly, they do not exploit the potential of multi-view functional magnetic resonance imaging (fMRI) for classifying FTD. Secondly, they do not consider the reliability of the multi-view FTD diagnosis. To address these limitations, we propose a reliable multi-view impartial decision network (MID-Net) for FTD diagnosis in fMRI. Our MID-Net provides confidence for each view and generates a reliable prediction without any conflict. To achieve this, we employ multiple expert models to extract evidence from the abundant neural network information contained in fMRI images. We then introduce the Dirichlet Distribution to characterize the expert class probability distribution from an evidence level. Additionally, a novel Impartial Decision Maker (IDer) is proposed to combine the different opinions inductively to arrive at an unbiased prediction without additional computation cost. Overall, our MID-Net dynamically integrates the decisions of different experts on FTD disease, especially when dealing with multi-view high-conflict cases. Extensive experiments on a high-quality FTD fMRI dataset demonstrate that our model outperforms previous methods and provides high uncertainty for hard-to-classify examples. We believe that our approach represents a significant step toward the deployment of reliable FTD decision-making under multi-expert conditions. We will release the codes for reproduction after acceptance

    Lentivirus-mediated RNA interference of vascular endothelial growth factor in monkey eyes with iris neovascularization

    Get PDF
    Purpose: To explore the in vivo anti-angiogenesis effects resulting from lentivirus-mediated RNAi of vascular endothelial growth factor (VEGF) in monkeys with iris neovascularization (INV). Methods: Five specific recombinant lentiviral vectors for RNA interference, targeting Macaca mulatta VEGFA, were designed and the one with best knock down efficacy (LV-GFP-VEGFi1) in H1299 cells and RF/6A cells was selected by real-time PCR for in vivo use. A laser-induced retinal vein occlusion model was established in one eye of seven cynomolgus monkeys. In monkeys number1, 3, and 5 (Group 1), the virus (1x10(8) particles) was intravitreally injected into the preretinal space of the animal's eye immediately after laser coagulation; and in monkeys number 2, 4, and 6 (Group 2), the virus (1x10(8) particles) was injected at 10 days after laser coagulation. In monkey number 7, a blank control injection was performed. In monkeys number 1 and 2, virus without RNAi sequence was used; in monkeys number 3 and 4, virus with nonspecific RNAi sequence was used; and in monkeys 5 and 6, LV-GFP-VEGFi1 was used. Results: In monkey number 5, at 23 days after laser treatment, no obvious INV was observed, while fluorescein angiography of the iris revealed high fluorescence at the margin of pupil and point posterior synechiae. At 50 days after laser treatment, only a slight ectropion uvea was found. However, in the other eyes, obvious INV or hyphema was observed. The densities of new iridic vessels all significantly varied: between monkey number 5 and number 3 (36.01 +/- 4.49/mm(2) versus 48.68 +/- 9.30/mm(2), p=0.025), between monkey number 3 and monkey number 7 (48.68 +/- 9.30/mm(2) versus 74.38 +/- 9.23/mm(2), p=0.002), and between monkey number 5 and number 7 (36.01 +/- 4.49/mm(2) versus 74.38 +/- 9.23/mm(2), p<0.001). Conclusions: Lentivirus-mediated RNAi of VEGF may be a new strategy to treat iris neovascularization, while further studies are needed to investigate the long-term effect.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000281341400003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Biochemistry & Molecular BiologyOphthalmologySCI(E)PubMed7ARTICLE187-891743-17531

    SAM-U: Multi-box prompts triggered uncertainty estimation for reliable SAM in medical image

    Full text link
    Recently, Segmenting Anything has taken an important step towards general artificial intelligence. At the same time, its reliability and fairness have also attracted great attention, especially in the field of health care. In this study, we propose multi-box prompts triggered uncertainty estimation for SAM cues to demonstrate the reliability of segmented lesions or tissues. We estimate the distribution of SAM predictions via Monte Carlo with prior distribution parameters, which employs different prompts as formulation of test-time augmentation. Our experimental results found that multi-box prompts augmentation improve the SAM performance, and endowed each pixel with uncertainty. This provides the first paradigm for a reliable SAM

    Uncertainty-informed Mutual Learning for Joint Medical Image Classification and Segmentation

    Full text link
    Classification and segmentation are crucial in medical image analysis as they enable accurate diagnosis and disease monitoring. However, current methods often prioritize the mutual learning features and shared model parameters, while neglecting the reliability of features and performances. In this paper, we propose a novel Uncertainty-informed Mutual Learning (UML) framework for reliable and interpretable medical image analysis. Our UML introduces reliability to joint classification and segmentation tasks, leveraging mutual learning with uncertainty to improve performance. To achieve this, we first use evidential deep learning to provide image-level and pixel-wise confidences. Then, an Uncertainty Navigator Decoder is constructed for better using mutual features and generating segmentation results. Besides, an Uncertainty Instructor is proposed to screen reliable masks for classification. Overall, UML could produce confidence estimation in features and performance for each link (classification and segmentation). The experiments on the public datasets demonstrate that our UML outperforms existing methods in terms of both accuracy and robustness. Our UML has the potential to explore the development of more reliable and explainable medical image analysis models. We will release the codes for reproduction after acceptance.Comment: 13 page
    corecore