8,060 research outputs found

    Detecting fractional Josephson effect through 4π4\pi phase slip

    Full text link
    Fractional Josephson effect is a unique character of Majorana Fermions in topological superconductor system. This effect is very difficult to detect experimentally because of the disturbance of quasiparticle poisoning and unwanted couplings in the superconductor. Here, we propose a scheme to probe fractional DC Josephson effect of semiconductor nanowire-based topological Josephson junction through 4{\pi} phase slip. By exploiting a topological RF SQUID system we find that the dominant contribution for Josephson coupling comes from the interaction of Majorana Fermions, resulting the resonant tunneling with 4{\pi} phase slip. Our calculations with experimentally reachable parameters show that the time scale for detecting the phase slip is two orders of magnitude shorter than the poisoning time of nonequilibrium quasiparticles. Additionally, with a reasonable nanowire length the 4{\pi} phase slip could overwhelm the topological trivial 2{\pi} phase slip. Our work is meaningful for exploring the effect of modest quantum fluctuations of the phase of the superconductor on the topological system, and provide a new method for quantum information processing.Comment: 5 pages, 3 figure

    Detecting fractional Josephson effect through 4π4\pi phase slip

    Full text link
    Fractional Josephson effect is a unique character of Majorana Fermions in topological superconductor system. This effect is very difficult to detect experimentally because of the disturbance of quasiparticle poisoning and unwanted couplings in the superconductor. Here, we propose a scheme to probe fractional DC Josephson effect of semiconductor nanowire-based topological Josephson junction through 4{\pi} phase slip. By exploiting a topological RF SQUID system we find that the dominant contribution for Josephson coupling comes from the interaction of Majorana Fermions, resulting the resonant tunneling with 4{\pi} phase slip. Our calculations with experimentally reachable parameters show that the time scale for detecting the phase slip is two orders of magnitude shorter than the poisoning time of nonequilibrium quasiparticles. Additionally, with a reasonable nanowire length the 4{\pi} phase slip could overwhelm the topological trivial 2{\pi} phase slip. Our work is meaningful for exploring the effect of modest quantum fluctuations of the phase of the superconductor on the topological system, and provide a new method for quantum information processing.Comment: 5 pages, 3 figure

    Free boson representation of DY(sl^(M+1N+1))DY_{\hbar}(\hat{sl} (M+1|N+1)) at level one

    Full text link
    We construct a realization of the central extension of super-Yangian double DY(sl^(M+1N+1))DY_{\hbar}(\hat{sl}(M+1|N+1)) at level-one in terms of free boson fields with a continuous parameter.Comment: 9 pages, latex, reference revise
    corecore