8,165 research outputs found
Non-saturating large magnetoresistance in semimetals
The rapidly expanding class of quantum materials known as {\emph{topological
semimetals}} (TSM) display unique transport properties, including a striking
dependence of resistivity on applied magnetic field, that are of great interest
for both scientific and technological reasons. However, experimental signatures
that can identify or discern the dominant mechanism and connect to available
theories are scarce. Here we present the magnetic susceptibility (), the
tangent of the Hall angle () along with magnetoresistance in four
different non-magnetic semimetals with high mobilities, NbP, TaP, NbSb and
TaSb, all of which exhibit non-saturating large MR. We find that the
distinctly different temperature dependences, and the values of
in phosphides and antimonates serve as empirical criteria to
sort the MR from different origins: NbP and TaP being uncompensated semimetals
with linear dispersion, in which the non-saturating magnetoresistance arises
due to guiding center motion, while NbSb and TaSb being {\it
compensated} semimetals, with a magnetoresistance emerging from nearly perfect
charge compensation of two quadratic bands. Our results illustrate how a
combination of magnetotransport and susceptibility measurements may be used to
categorize the increasingly ubiquitous non-saturating large magnetoresistance
in TSMs.Comment: Accepted for publication at Proc. Natl. Acad. Sci., minor revisions,
6 figure
Magnetoresistance, Micromagnetism and Domain Wall Effects in Epitaxial Fe and Co Structures with Stripe Domains
We review our recent magnetotransport and micromagnetic studies of
lithographically defined epitaxial thin film structures of bcc Fe and hcp Co
with stripe domains. Micromagnetic structure and resistivity anisotropy are
shown to be the predominant sources of low field magnetoresistance (MR) in
these microstructures, with domain wall (DW) effects smaller but observable
(DW-MR ). In Fe, at low temperature, in a regime in which fields
have a significant effect on electron trajectories, a novel negative DW
contribution to the resistivity is observed. In hcp Co microstructures,
temperature dependent transport measurements for current perpendicular and
parallel to walls show that any additional resistivity due to DW scattering is
very small.Comment: 7 pages, 8 figures, to appear in Journal of Applied Physics 199
Effect of Ti seed layer on the magnetization reversal process of Co/NiFe/Al-oxide/NiFe junction films
科研費報告書収録論文(課題番号:13305001・基盤研究(A)(2) ・H13~H15/研究代表者:宮崎, 照宣/高品位微小トンネル接合へのスピン注入
Lorentz transmission electron microscopy and magnetic force microscopy characterization of NiFe/Al-oxide/Co films
科研費報告書収録論文(課題番号:13305001・基盤研究(A)(2) ・H13~H15/研究代表者:宮崎, 照宣/高品位微小トンネル接合へのスピン注入
Excited state properties of point defects in semiconductors and insulators investigated with time-dependent density functional theory
We present a formulation of spin-conserving and spin-flip, hybrid
time-dependent density functional theory (TDDFT), including the calculation of
analytical forces, which allows for efficient calculations of excited state
properties of solid-state systems with hundreds to thousands of atoms. We
discuss an implementation on both GPU and CPU based architectures, along with
several acceleration techniques. We then apply our formulation to the study of
several point defects in semiconductors and insulators, specifically the
negatively charged nitrogen-vacancy and neutral silicon-vacancy centers in
diamond, the neutral divacancy center in 4H silicon carbide, and the neutral
oxygen-vacancy center in magnesium oxide. Our results highlight the importance
of taking into account structural relaxations in excited states, in order to
interpret and predict optical absorption and emission mechanisms in
spin-defects
Forced and unforced decadal behavior of the interhemispheric SST contrast during the instrumental period (1881–2012):contextualizing the abrupt shift around 1970
The sea surface temperature (SST) contrast between the Northern Hemisphere (NH) and Southern Hemisphere (SH) influences the location of the intertropical convergence zone (ITCZ) and the intensity of the monsoon systems. This study examines the contributions of external forcing and unforced internal variability to the interhemispheric SST contrast in HadSST3 and ERSSTv5 observations, and 10 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) from 1881 to 2012. Using multimodel mean fingerprints, a significant influence of anthropogenic, but not natural, forcing is detected in the interhemispheric SST contrast, with the observed response larger than that of the model mean in ERSSTv5. The forced response consists of asymmetric NH–SH SST cooling from the mid-twentieth century to around 1980, followed by opposite NH–SH SST warming. The remaining best-estimate residual or unforced component is marked by NH–SH SST maxima in the 1930s and mid-1960s, and a rapid NH–SH SST decrease around 1970. Examination of decadal shifts in the observed interhemispheric SST contrast highlights the shift around 1970 as the most prominent from 1881 to 2012. Both NH and SH SST variability contributed to the shift, which appears not to be attributable to external forcings. Most models examined fail to capture such large-magnitude shifts in their control simulations, although some models with high interhemispheric SST variability are able to produce them. Large-magnitude shifts produced by the control simulations feature disparate spatial SST patterns, some of which are consistent with changes typically associated with the Atlantic meridional overturning circulation (AMOC)
Recommended from our members
Direct imaging of short-range order and its impact on deformation in Ti-6Al.
Chemical short-range order (SRO) within a nominally single-phase solid solution is known to affect the mechanical properties of alloys. While SRO has been indirectly related to deformation, direct observation of the SRO domain structure, and its effects on deformation mechanisms at the nanoscale, has remained elusive. Here, we report the direct observation of SRO in relation to deformation using energy-filtered imaging in a transmission electron microscope (TEM). The diffraction contrast is enhanced by reducing the inelastically scattered electrons, revealing subnanometer SRO-enhanced domains. The destruction of these domains by dislocation planar slip is observed after ex situ and in situ TEM mechanical testing. These results confirm the impact of SRO in Ti-Al alloys on the scale of angstroms. The direct confirmation of SRO in relationship to dislocation plasticity in metals can provide insight into how the mechanical behavior of concentrated solid solutions by the material's thermal history
Acoustic cues to tonal contrasts in Mandarin: Implications for cochlear implants
The present study systematically manipulated three acoustic cues-fundamental frequency (f0), amplitude envelope, and duration-to investigate their contributions to tonal contrasts in Mandarin. Simplified stimuli with all possible combinations of these three cues were presented for identification to eight normal-hearing listeners, all native speakers of Mandarin from Taiwan. The f0 information was conveyed either by an f0-controlled sawtooth carrier or a modulated noise so as to compare the performance achievable by a clear indication of voice f0 and what is possible with purely temporal coding of f0. Tone recognition performance with explicit f0 was much better than that with any combination of other acoustic cues (consistently greater than 90% correct compared to 33%-65%; chance is 25%). In the absence of explicit f0, the temporal coding of f0 and amplitude envelope both contributed somewhat to tone recognition, while duration had only a marginal effect. Performance based on these secondary cues varied greatly across listeners. These results explain the relatively poor perception of tone in cochlear implant users, given that cochlear implants currently provide only weak cues to f0, so that users must rely upon the purely temporal (and secondary) features for the perception of tone. (c) 2008 Acoustical Society of America
- …