17 research outputs found

    Comparison of phosphodiesterase 10A and dopamine transporter levels as markers of disease burden in early Parkinson's disease

    Get PDF
    BACKGROUND: Recent work has shown loss of phosphodiesterase 10A levels in middle-stage and advanced treated patients with PD, which was associated with motor symptom severity. OBJECTIVES: To assess phosphodiesterase 10A levels in early PD and compare with loss of dopamine transporter as markers of disease burden. METHODS: Seventy-eight subjects were included in this study (17 early de novo, 15 early l-dopa-treated, 24 moderate-advanced l-dopa-treated patients with PD, and 22 healthy controls). All participants underwent [11 C]IMA107 PET, [11 C]PE2I PET, and 3-Tesla MRI scan. RESULTS: Early de novo PD patients showed loss of [11 C]IMA107 and of [11 C]PE2I binding in caudate and putamen (P < 0.001); early l-dopa-treated PD patients showed additional loss of [11 C]IMA107 in the caudate (P < 0.001; annual decline 3.6%) and putamen (P < 0.001; annual decline 2.8%), but loss of [11 C]PE2I only in the putamen (P < 0.001; annual decline 6.8%). Lower [11 C]IMA107 correlated with lower [11 C]PE2I in the caudate (rho = 0.51; P < 0.01) and putamen (rho = 0.53; P < 0.01). Longer disease duration correlated with lower [11 C]IMA107 in the caudate (rho = -0.72; P < 0.001) and putamen (rho = -0.48; P < 0.01), and with lower [11 C]PE2I only in the putamen (rho = -0.65; P < 0.001). Higher burden of motor symptoms correlated with lower [11 C]IMA107 in the caudate (rho = -0.42; P < 0.05) and putamen (rho = -0.41; P < 0.05), and with lower [11 C]PE2I only in the putamen (rho = -0.69; P < 0.001). CONCLUSION: Our findings demonstrate loss of phosphodiesterase 10A levels very early in the course of PD and is associated with the gradual and progressive increase of motor symptoms. Phosphodiesterase 10A imaging shows similar potential with dopamine transporter imaging to follow disease progression. © 2019 International Parkinson and Movement Disorder Society

    Neuroimaging of Sleep Disturbances in Movement Disorders

    Get PDF
    Sleep dysfunction is recognized as a distinct clinical manifestation in movement disorders, often reported early on in the disease course. Excessive daytime sleepiness, rapid eye movement sleep behavior disorder and restless leg syndrome, amidst several others, are common sleep disturbances that often result in significant morbidity. In this article, we review the spectrum of sleep abnormalities across atypical Parkinsonian disorders including multiple system atrophy (MSA), progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS), as well as Parkinson's disease (PD) and Huntington's disease (HD). We also explore the current concepts on the neurobiological underpinnings of sleep disorders, including the role of dopaminergic and non-dopaminergic pathways, by evaluating the molecular, structural and functional neuroimaging evidence based on several novel techniques including magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Based on the current state of research, we suggest that neuroimaging is an invaluable tool for assessing structural and functional correlates of sleep disturbances, harboring the ability to shed light on the sleep problems attached to the limited treatment options available today. As our understanding of the pathophysiology of sleep and wake disruption heightens, novel therapeutic approaches are certain to transpire

    Neuroimaging in Lewy body dementia

    No full text
    corecore