12 research outputs found

    Room Temperature Single-Photon Emission from Individual Perovskite Quantum Dots

    No full text
    Lead-halide-based perovskites have been the subject of numerous recent studies largely motivated by their exceptional performance in solar cells. Electronic and optical properties of these materials have been commonly controlled by varying the composition (<i>e.g.</i>, the halide component) and/or crystal structure. Use of nanostructured forms of perovskites can provide additional means for tailoring their functionalities <i>via</i> effects of quantum confinement and wave function engineering. Furthermore, it may enable applications that explicitly rely on the quantum nature of electronic excitations. Here, we demonstrate that CsPbX<sub>3</sub> quantum dots (X = I, Br) can serve as room-temperature sources of quantum light, as indicated by strong photon antibunching detected in single-dot photoluminescence measurements. We explain this observation by the presence of fast nonradiative Auger recombination, which renders multiexciton states virtually nonemissive and limits the fraction of photon coincidence events to ∌6% on average. We analyze limitations of these quantum dots associated with irreversible photodegradation and fluctuations (“blinking”) of the photoluminescence intensity. On the basis of emission intensity-lifetime correlations, we assign the “blinking” behavior to random charging/discharging of the quantum dot driven by photoassisted ionization. This study suggests that perovskite quantum dots hold significant promise for applications such as quantum emitters; however, to realize this goal, one must resolve the problems of photochemical stability and photocharging. These problems are largely similar to those of more traditional quantum dots and, hopefully, can be successfully resolved using advanced methodologies developed over the years in the field of colloidal nanostructures

    Auger Recombination of Biexcitons and Negative and Positive Trions in Individual Quantum Dots

    No full text
    Charged exciton states commonly occur both in spectroscopic studies of quantum dots (QDs) and during operation of QD-based devices. The extra charge added to the neutral exciton modifies its radiative decay rate and also opens an additional nonradiative pathway associated with an Auger process whereby the recombination energy of an exciton is transferred to the excess charge. Here we conduct single-dot spectroscopic studies of Auger recombination in thick-shell (“giant”) CdSe/CdS QDs with and without an interfacial alloy layer using time-tagged, time-correlated single-photon counting. In photoluminescence (PL) intensity trajectories of some of the dots, we resolve three distinct states of different emissivities (“bright”, “gray”, and “dark”) attributed, respectively, to the neutral exciton and negative and positive trions. Simultaneously acquired PL lifetime trajectories indicate that the positive trion is much shorter lived than the negative trion, which can be explained by a high density of valence band states and a small hole localization radius (defined by the QD core size), factors that favor an Auger process involving intraband excitation of a hole. A comparison of trion and biexciton lifetimes suggests that the biexciton Auger decay can be treated in terms of a superposition of two independent channels associated with positive- and negative-trion pathways. The resulting interdependence between Auger time constants might simplify the studies of multicarrier recombination by allowing one, for example, to infer Auger lifetimes of trions of one sign based on the measurements of biexciton decay and dynamics of the trions of the opposite sign or, alternatively, estimate the biexciton lifetime based on studies of trion dynamics

    Effect of Interfacial Alloying versus “Volume Scaling” on Auger Recombination in Compositionally Graded Semiconductor Quantum Dots

    No full text
    Auger recombination is a nonradiative three-particle process wherein the electron–hole recombination energy dissipates as a kinetic energy of a third carrier. Auger decay is enhanced in quantum-dot (QD) forms of semiconductor materials compared to their bulk counterparts. Because this process is detrimental to many prospective applications of the QDs, the development of effective approaches for suppressing Auger recombination has been an important goal in the QD field. One such approach involves “smoothing” of the confinement potential, which suppresses the intraband transition involved in the dissipation of the electron–hole recombination energy. The present study evaluates the effect of increasing “smoothness” of the confinement potential on Auger decay employing a series of CdSe/CdS-based QDs wherein the core and the shell are separated by an intermediate layer of a CdSe<sub><i>x</i></sub>S<sub>1–<i>x</i></sub> alloy comprised of 1–5 sublayers with a radially tuned composition. As inferred from single-dot measurements, use of the five-step grading scheme allows for strong suppression of Auger decay for both biexcitons and charged excitons. Further, due to nearly identical emissivities of neutral and charged excitons, these QDs exhibit an interesting phenomenon of lifetime blinking for which random fluctuations of a photoluminescence lifetime occur for a nearly constant emission intensity

    Effect of Auger Recombination on Lasing in Heterostructured Quantum Dots with Engineered Core/Shell Interfaces

    No full text
    Nanocrystal quantum dots (QDs) are attractive materials for applications as laser media because of their bright, size-tunable emission and the flexibility afforded by colloidal synthesis. Nonradiative Auger recombination, however, hampers optical amplification in QDs by rapidly depleting the population of gain-active multiexciton states. In order to elucidate the role of Auger recombination in QD lasing and isolate its influence from other factors that might affect optical gain, we study two types of CdSe/CdS core/shell QDs with the same core radii and the same total sizes but different properties of the core/shell interface (“sharp” vs “smooth”). These samples exhibit distinctly different biexciton Auger lifetimes but are otherwise virtually identical. The suppression of Auger recombination in the sample with a smooth (alloyed) interface results in a notable improvement in the optical gain performance manifested in the reduction of the threshold for amplified spontaneous emission and the ability to produce dual-color lasing involving both the band-edge (1S) and the higher-energy (1P) electronic states. We develop a model, which explicitly accounts for the multiexciton nature of optical gain in QDs, and use it to analyze the competition between stimulated emission from multiexcitons and their decay via Auger recombination. These studies re-emphasize the importance of Auger recombination control for the realization of real-life QD-based lasing technologies and offer practical strategies for suppression of Auger recombination via “interface engineering” in core/shell structures

    Effect of the Core/Shell Interface on Auger Recombination Evaluated by Single-Quantum-Dot Spectroscopy

    No full text
    Previous single-particle spectroscopic studies of colloidal quantum dots have indicated a significant spread in biexciton lifetimes across an ensemble of nominally identical nanocrystals. It has been speculated that in addition to dot-to-dot variation in physical dimensions, this spread is contributed to by variations in the structure of the quantum dot interface, which controls the shape of the confinement potential. Here, we directly evaluate the effect of the composition of the core–shell interface on single- and multiexciton dynamics via side-by-side measurements of individual core–shell CdSe/CdS nanocrystals with a sharp versus smooth (graded) interface. To realize the latter type of structures we incorporate a CdSe<sub><i>x</i></sub>S<sub>1–<i>x</i></sub> alloy layer of controlled composition and thickness between the CdSe core and the CdS shell. We observe that while having essentially no effect on single-exciton decay, the interfacial alloy layer leads to a systematic increase in biexciton lifetimes, which correlates with the increase in the biexciton emission efficiency, as inferred from two-photon correlation measurements. These observations provide direct experimental evidence that in addition to the size of the quantum dot, its interfacial properties also significantly affect the rate of Auger recombination, which governs biexciton decay. These findings help rationalize previous observations of a significant heterogeneity in the biexciton lifetimes across similarly sized quantum dots and should facilitate the development of “Auger-recombination-free” colloidal nanostructures for a range of applications from lasers and light-emitting diodes to photodetectors and solar cells

    Tailored Electronic Structure and Optical Properties of Conjugated Systems through Aggregates and Dipole–Dipole Interactions

    No full text
    A series of PPVO (<i>p</i>-phenylene vinylene oligomer) derivatives with functional groups of varying electronegativity were synthesized via the Horner–Wadsworth–Emmons reaction. Subtle changes in the end group functionality significantly impact the molecular electronic and optical properties of the PPVOs, resulting in broadly tunable and efficient UV absorption and photoluminescence spectra. Of particular interest is the NO<sub>2</sub>-substituted PPVO which exhibits photoluminescence color ranging from the blue to the red, thus encompassing the entire visible spectrum. Our experimental study and electronic structure calculations suggest that the formation of aggregates and strong dipole–dipole solute–solvent interactions are responsible for the observed strong solvatochromism. Experimental and theoretical results for the NH<sub>2</sub>-, H-, and NO<sub>2</sub>-substituted PPVOs suggest that the stabilization of ground or excited state dipoles leads to the blue or red shift of the optical spectra. The electroluminescence (EL) spectra of H-, COOH-, and NO<sub>2</sub>-PPVO have maxima at 487, 518, and 587 nm, respectively, in the OLED device. This trend in the EL spectra is in excellent agreement with the end group-dependent PL spectra of the PPVO thin-films

    Single-Nanocrystal Photoluminescence Spectroscopy Studies of Plasmon–Multiexciton Interactions at Low Temperature

    No full text
    Using thick-shell or “giant” CdSe/CdS nanocrystal quantum dots (g-NQDs), characterized by strongly suppressed Auger recombination, we studied the influence of plasmonic interactions on multiexciton emission. Specifically, we assessed the separate effects of plasmonic absorption and plasmonic emission enhancement by a systematic analysis of the pump fluence dependence of low-temperature photoluminescence (low-<i>T</i> PL) derived from individual CdSe/CdS g-NQDs deposited on nanoroughened silver films. Our study reveals that (1) the multiexciton (MX) emissions in g-NQD coupled to silver films were enhanced not only through the creation of more excitons via enhancement of absorption but also through the direct modification of the competition between the radiative and nonradiative recombination processes of MXs; (2) strong enhancement in absorption is not necessary for strong multiexciton emission; and (3) the emission of MXs can become stronger with the increase of multiexciton order. We also exploited the strong enhancement of MX emission to perform second-order photon correlation and cross-correlation experiments using very low pump fluences and observed a strong photon bunching that decays with increasing pump fluence

    Controlled Alloying of the Core–Shell Interface in CdSe/CdS Quantum Dots for Suppression of Auger Recombination

    No full text
    The influence of a CdSe<sub><i>x</i></sub>S<sub>1‑<i>x</i></sub> interfacial alloyed layer on the photophysical properties of core/shell CdSe/CdS nanocrystal quantum dots (QDs) is investigated by comparing reference QDs with a sharp core/shell interface to alloyed structures with an intermediate CdSe<sub><i>x</i></sub>S<sub>1‑<i>x</i></sub> layer at the core/shell interface. To fully realize the structural contrast, we have developed two novel synthetic approaches: a method for fast CdS-shell growth, which results in an abrupt core/shell boundary (no intentional or unintentional alloying), and a method for depositing a CdSe<sub><i>x</i></sub>S<sub>1‑<i>x</i></sub> alloy layer of controlled composition onto the CdSe core prior to the growth of the CdS shell. Both types of QDs possess similar size-dependent single-exciton properties (photoluminescence energy, quantum yield, and decay lifetime). However the alloyed QDs show a significantly longer biexciton lifetime and up to a 3-fold increase in the biexciton emission efficiency compared to the reference samples. These results provide direct evidence that the structure of the QD interface has a significant effect on the rate of nonradiative Auger recombination, which dominates biexciton decay. We also observe that the energy gradient at the core–shell interface introduced by the alloyed layer accelerates hole trapping from the shell to the core states, which results in suppression of shell emission. This comparative study offers practical guidelines for controlling multicarrier Auger recombination without a significant effect on either spectral or dynamical properties of single excitons. The proposed strategy should be applicable to QDs of a variety of compositions (including, <i>e.g</i>., infrared-emitting QDs) and can benefit numerous applications from light emitting diodes and lasers to photodetectors and photovoltaics

    Thick-Shell CuInS<sub>2</sub>/ZnS Quantum Dots with Suppressed “Blinking” and Narrow Single-Particle Emission Line Widths

    No full text
    Quantum dots (QDs) of ternary I–III–VI<sub>2</sub> compounds such as CuInS<sub>2</sub> and CuInSe<sub>2</sub> have been actively investigated as heavy-metal-free alternatives to cadmium- and lead-containing semiconductor nanomaterials. One serious limitation of these nanostructures, however, is a large photoluminescence (PL) line width (typically >300 meV), the origin of which is still not fully understood. It remains even unclear whether the observed broadening results from considerable sample heterogeneities (due, e.g., to size polydispersity) or is an unavoidable intrinsic property of individual QDs. Here, we answer this question by conducting single-particle measurements on a new type of CuInS<sub>2</sub> (CIS) QDs with an especially thick ZnS shell. These QDs show a greatly enhanced photostability compared to core-only or thin-shell samples and, importantly, exhibit a strongly suppressed PL blinking at the single-dot level. Spectrally resolved measurements reveal that the single-dot, room-temperature PL line width is much narrower (down to ∌60 meV) than that of the ensemble samples. To explain this distinction, we invoke a model wherein PL from CIS QDs arises from radiative recombination of a delocalized band-edge electron and a localized hole residing on a Cu-related defect and also account for the effects of electron–hole Coulomb coupling. We show that random positioning of the emitting center in the QD can lead to more than 300 meV variation in the PL energy, which represents at least one of the reasons for large PL broadening of the ensemble samples. These results suggest that in addition to narrowing size dispersion, future efforts on tightening the emission spectra of these QDs might also attempt decreasing the “positional” heterogeneity of the emitting centers

    Impact of Morphological Inhomogeneity on Excitonic States in Highly Mismatched Alloy ZnSe<sub>1–<i>X</i></sub>Te<sub><i>X</i></sub> Nanocrystals

    No full text
    ZnSe1–XTeX nanocrystals (NCs) are promising photon emitters with tunable emission across the violet to orange range and near-unity quantum yields. However, these NCs suffer from broad emission line widths and multiple exciton decay dynamics, which discourage their practicable use. Here, we explore the excitonic states in ZnSe1–XTeX NCs and their photophysical characteristics in relation to the morphological inhomogeneity of highly mismatched alloys. Ensemble and single-dot spectroscopic analysis of a series of ZnSe1–XTeX NC samples with varying Te ratios coupled with computational calculations shows that, due to the distinct electronegativity between Se and Te, nearest-neighbor Te pairs in ZnSe1–XTeX alloys create localized hole states spectrally distributed approximately 130 meV above the 1Sh level of homogeneous ZnSe1–XTeX NCs. This forms spatially separated excitons (delocalized electron and localized hole in trap), accounting for both inhomogeneous and homogeneous line width broadening with delayed recombination dynamics. Our results identify photophysical characteristics of excitonic states in NCs made of highly mismatched alloys and provide future research directions with potential implications for photonic applications
    corecore