2 research outputs found

    Enhanced Dispersion and Stability of Petroleum Coke Water Slurries via Triblock Copolymer and Xanthan Gum: Rheological and Adsorption Studies

    No full text
    The rheology of petroleum coke (petcoke) water slurries was investigated with a variety of nonionic and anionic dispersants including poly­(ethylene oxide) (PEO)-<i>b</i>-poly­(propylene oxide) (PPO)-<i>b</i>-PEO triblock copolymers (trade name: Pluronic, BASF), poly­(vinyl alcohol) (PVA), polyvinylpyrrolidone (PVP), poly­(ethylene oxide) (PEO), poly­(carboxylate acid) (PCA), sodium lignosulfonate (SLS), and poly­(acrylic acid) (PAA). Each effective dispersant system shared very similar rheological behavior to the others when examined at the same volume fraction from its maximum petcoke loading. Triblock copolymer, Pluronic F127 (F127), was found to be the best dispersant by comparing the maximum petcoke loading for each dispersant. The yield stress was measured as a function of petcoke loading and dispersant concentration for F127, and a minimum dispersant concentration was observed. An adsorption isotherm and atomic force microscopy (AFM) images reveal that this effective dispersion of petcoke particles by F127 is due to the formation of a uniform monolayer of brushes where hydrophobic PPO domains of F127 adhere to the petcoke surface, while hydrophilic PEO tails fill the gap between petcoke particles. F127 was then compared to other Pluronics with various PEO and PPO chain lengths, and the effects of surface and dispersant hydrophilicity were examined. Finally, xanthan gum (XG) was tested as a stabilizer in combination with F127 for potential industrial application, and F127 appears to break the XG aggregates into smaller aggregates through competitive adsorption, leading to an excellent degree of dispersion but the reduced stability of petcoke slurries

    Surface-Modified Carbon Nanotubes with Ultrathin Co<sub>3</sub>O<sub>4</sub> Layer for Enhanced Oxygen Evolution Reaction

    No full text
    Alkaline water electrolysis is a vital technology for sustainable and efficient hydrogen production. However, the oxygen evolution reaction (OER) at the anode suffers from sluggish kinetics, requiring overpotential. Precious metal-based electrocatalysts are commonly used but face limitations in cost and availability. Carbon nanostructures, such as carbon nanotubes (CNTs), offer promising alternatives due to their abundant active sites and efficient charge-transfer properties. Surface modification of CNTs through techniques such as pulsed laser ablation in liquid media (PLAL) can enhance their catalytic performance. In this study, we investigate the role of surface-modified carbon (SMC) as a support to increase the active sites of transition metal-based electrocatalysts and its impact on electrocatalytic performance for the OER. We focus on Co3O4@SMC heterostructures, where an ultrathin layer of Co3O4 is deposited onto SMCs using a combination of PLAL and atomic layer deposition. A comparative analysis with aggregated Co3O4 and Co3O4@pristine CNTs reveals the superior OER performance of Co3O4@SMC. The optimized Co3O4@SMC exhibits a 25.6% reduction in overpotential, a lower Tafel slope, and a significantly higher turnover frequency (TOF) in alkaline water splitting. The experimental results, combined with density functional theory (DFT) calculations, indicate that these improvements can be attributed to the high electrocatalytic activity of Co3O4 as active sites achieved through the homogeneous distribution on SMCs. The experimental methodology, morphology, composition, and their correlation with activity and stability of Co3O4@SMC for the OER in alkaline media are discussed in detail. This study contributes to the understanding of SMC-based heterostructures and their potential for enhancing electrocatalytic performance in alkaline water electrolysis
    corecore