55 research outputs found
Stress corrosion cracking of copper in swollen bentonite simulating nuclear waste disposal environment
Stress corrosion cracking (SCC) of pure copper in bentonite clay was examined using a slow strain rate test (SSRT). Bentonite was swollen with pure water or aqueous solutions containing NH₃ of 5 and 10 mM. Thick corrosion films and particulate deposits were formed on the copper surface after the SSRT. Typical tarnish rupture-type SCC occurred on pure copper in swollen bentonite with and without NH₃. The crack propagation rate was enhanced by NH₃. It is confirmed that a thick oxide layer was formed on copper during plastic deformation, resulting in tarnish crack-type SCC. Many particulate deposits observed on the surface were formed due to the rapid dissolution of Cu²⁺ ions to form porous CuO at local deformed sites, regardless of the SCC occurrence
Distinct but interchangeable subpopulations of colorectal cancer cells with different growth fates and drug sensitivity
大腸がん細胞の増殖運命の違いと薬剤感受性 --その柔軟性を決めるメカニズム--. 京都大学プレスリリース. 2023-01-20.Dynamic changes in cell properties lead to intratumor heterogeneity; however, the mechanisms of nongenetic cellular plasticity remain elusive. When the fate of each cell from colorectal cancer organoids was tracked through a clonogenic growth assay, the cells showed a wide range of growth ability even within the clonal organoids, consisting of distinct subpopulations; the cells generating large spheroids and the cells generating small spheroids. The cells from the small spheroids generated only small spheroids (S-pattern), while the cells from the large spheroids generated both small and large spheroids (D-pattern), both of which were tumorigenic. Transition from the S-pattern to the D-pattern occurred by various extrinsic triggers, in which Notch signaling and Musashi-1 played a key role. The S-pattern spheroids were resistant to chemotherapy and transited to the D-pattern upon drug treatment through Notch signaling. As the transition is linked to the drug resistance, it can be a therapeutic target
Glucotoxicity Induces Insulin Promoter DNA Methylation in Beta Cells
Recent studies have implicated epigenetics in the pathophysiology of diabetes. Furthermore, DNA methylation, which irreversibly deactivates gene transcription, of the insulin promoter, particularly the cAMP response element, is increased in diabetes patients. However, the underlying mechanism remains unclear. We aimed to investigate insulin promoter DNA methylation in an over-nutrition state. INS-1 cells, the rat pancreatic beta cell line, were cultured under normal-culture-glucose (11.2 mmol/l) or experimental-high-glucose (22.4 mmol/l) conditions for 14 days, with or without 0.4 mmol/l palmitate. DNA methylation of the rat insulin 1 gene (Ins1) promoter was investigated using bisulfite sequencing and pyrosequencing analysis. Experimental-high-glucose conditions significantly suppressed insulin mRNA and increased DNA methylation at all five CpG sites within the Ins1 promoter, including the cAMP response element, in a time-dependent and glucose concentration-dependent manner. DNA methylation under experimental-high-glucose conditions was unique to the Ins1 promoter; however, palmitate did not affect DNA methylation. Artificial methylation of Ins1 promoter significantly suppressed promoter-driven luciferase activity, and a DNA methylation inhibitor significantly improved insulin mRNA suppression by experimental-high-glucose conditions. Experimental-high-glucose conditions significantly increased DNA methyltransferase activity and decreased ten-eleven-translocation methylcytosine dioxygenase activity. Oxidative stress and endoplasmic reticulum stress did not affect DNA methylation of the Ins1 promoter. High glucose but not palmitate increased ectopic triacylglycerol accumulation parallel to DNA methylation. Metformin upregulated insulin gene expression and suppressed DNA methylation and ectopic triacylglycerol accumulation. Finally, DNA methylation of the Ins1 promoter increased in isolated islets from Zucker diabetic fatty rats. This study helps to clarify the effect of an over-nutrition state on DNA methylation of the Ins1 promoter in pancreatic beta cells. It provides new insights into the irreversible pathophysiology of diabetes
Identification of a Polymorphic Gene, BCL2A1, Encoding Two Novel Hematopoietic Lineage-specific Minor Histocompatibility Antigens
We report the identification of two novel minor histocompatibility antigens (mHAgs), encoded by two separate single nucleotide polymorphisms on a single gene, BCL2A1, and restricted by human histocompatibility leukocyte antigen (HLA)-A*2402 (the most common HLA-A allele in Japanese) and B*4403, respectively. Two cytotoxic T lymphocyte (CTL) clones specific for these mHAgs were first isolated from two distinct recipients after hematopoietic cell transplantation. Both clones lyse only normal and malignant cells within the hematopoietic lineage. To localize the gene encoding the mHAgs, two-point linkage analysis was performed on the CTL lytic patterns of restricting HLA-transfected B lymphoblastoid cell lines obtained from Centre d'Etude du Polymorphisme Humain. Both CTL clones showed a completely identical lytic pattern for 4 pedigrees and the gene was localized within a 3.6-cM interval of 15q24.3–25.1 region that encodes at least 46 genes. Of those, only BCL2A1 has been reported to be expressed in hematopoietic cells and possess three nonsynonymous nucleotide changes. Minigene transfection and epitope reconstitution assays with synthetic peptides identified both HLA-A*2402– and B*4403-restricted mHAg epitopes to be encoded by distinct polymorphisms within BCL2A1
Beam and SKS spectrometers at the K1.8 beam line
High-resolution spectrometers for both incident beams and scattered particles have been constructed at the K1.8 beam line of the Hadron Experimental Facility at J-PARC. A point-to-point optics is realized between the entrance and exit of QQDQQ magnets for the beam spectrometer. Fine-pitch wire chamber trackers and hodoscope counters are installed in the beam spectrometer to accept a high rate beam up to 107 Hz. The superconducting kaon spectrometer for scattered particles was transferred from KEK with modifications to the cryogenic system and detectors. A missing-mass resolution of 1.9 ± 0.1 MeV/c2 (FWHM) was achieved for the ∑ peaks of (π±, K+) reactions on a proton target in the first physics run of E19 in 2010
放射性廃棄物処分安全評価のためのセレンの移行挙動に関する研究
京都大学0048新制・課程博士博士(工学)甲第16844号工博第3565号新制||工||1539(附属図書館)29519京都大学大学院工学研究科原子核工学専攻(主査)教授 森山 裕丈, 教授 高木 郁二, 准教授 佐々木 隆之学位規則第4条第1項該当Doctor of Philosophy (Engineering)Kyoto UniversityDFA
- …