22 research outputs found
ΠΠ°ΡΡΠ½ΠΎΠΊΠΈΡΠ΅Π»ΠΈΠ½Π΅Π½ ΡΡΡΡΠ°Π² Π½Π° Π±ΠΈΠ²ΠΎΠ»ΡΠΊΠΎ ΠΌΠ»ΡΠΊΠΎ ΠΏΡΠΈ ΠΈΠ½ΡΠ΅Π½Π·ΠΈΠ²Π½ΠΎ ΠΈ ΠΏΠ°ΡΠΈΡΠ½ΠΎ ΠΎΡΠ³Π»Π΅ΠΆΠ΄Π°Π½Π΅
With the aim to assess the fatty-acid profile of buffalo milk from intensive and pasture farming system, the study included two farms. Farm 1 assigned 9 non-grazing buffaloes raised on green fodder or maize silage, and Farm 2 β 8 buffaloes on pasture until November and hay in winter. Individual samples of milk, taken in 7 monthly test days from August to February, were subjected to the Roese-Gottlieb lipid analysis. Analyses of variance were carried out per each fatty acid (FA), including the effects of farming, test day, milk yield and fat content. Farming system was established to be significant source of variation of all individual monounsaturated and polyunsaturated FAs (PUFA) and total PUFA. All PUFAs, except C20:3n3 and C20:2n6, showed better values in the milk from the buffaloes on pasture β more than 2-fold difference in total conjugated linoleic acids (0.913%) and rumenic acid (0.829%) in particular, in alpha-linolenic (0.145%) and gamma-linolenic (0.502%) acid, and in omega-3 FAs (n3), rendering n6/n3 ratio definitely lower (1.99). This applies also to greater extent to trans-C18:1 (4.027%) and vaccenic acid (2.323%) in particular, and to lesser to atherogenicity (2.44) and thrombogenicity (3.21) index. While C18:4n3 was found to increase, vaccenic and gammalinolenic acid decline throughout grazing season, as well as conjugated linoleic acids with the exception of a peak in December. C20:5n3, C22:5n3 and C20:3n6 are characterized by such even more pronounced peak.Π‘ ΡΠ΅Π» ΠΎΡΠ΅Π½ΠΊΠ° Π½Π° ΠΌΠ°ΡΡΠ½ΠΎΠΊΠΈΡΠ΅Π»ΠΈΡ ΡΡΡΡΠ°Π² Π½Π° Π±ΠΈΠ²ΠΎΠ»ΡΠΊΠΎΡΠΎ ΠΌΠ»ΡΠΊΠΎ ΠΎΡ ΠΈΠ½ΡΠ΅Π½Π·ΠΈΠ²Π½Π° ΠΈ ΠΏΠ°ΡΠΈΡΠ½Π° ΡΠΈΡΡΠ΅ΠΌΠ° Π·Π° ΠΎΡΠ³Π»Π΅ΠΆΠ΄Π°Π½Π΅, Π² ΠΏΡΠΎΡΡΠ²Π°Π½Π΅ΡΠΎ Π±ΡΡ
Π° Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈ Π΄Π²Π΅ ΡΠ΅ΡΠΌΠΈ. ΠΡ ΡΠ΅ΡΠΌΠ° 1 Π±ΡΡ
Π° Π²Π·Π΅ΡΠΈ 9 Π±ΠΈΠ²ΠΎΠ»ΠΈΡΠΈ Π±Π΅Π· ΠΏΠ°ΡΠ°, Ρ
ΡΠ°Π½Π΅Π½ΠΈ ΡΡΡ Π·Π΅Π»Π΅Π½Π° ΠΌΠ°ΡΠ° ΠΈΠ»ΠΈ ΡΠ°ΡΠ΅Π²ΠΈΡΠ΅Π½ ΡΠΈΠ»Π°ΠΆ, Π° ΠΎΡ ΡΠ΅ΡΠΌΠ° 2 β 8 Π±ΠΈΠ²ΠΎΠ»ΠΈΡΠΈ Π½Π° ΠΏΠ°ΡΠΈΡΠ½ΠΎ ΠΎΡΠ³Π»Π΅ΠΆΠ΄Π°Π½Π΅ Π΄ΠΎ Π½ΠΎΠ΅ΠΌΠ²ΡΠΈ ΠΈ Π½Π° ΡΠ΅Π½ΠΎ ΠΏΡΠ΅Π· Π·ΠΈΠΌΠ°ΡΠ°. ΠΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»Π½ΠΈΡΠ΅ ΠΏΡΠΎΠ±ΠΈ ΠΌΠ»ΡΠΊΠΎ, Π²Π·Π΅ΡΠΈ Π² 7 ΠΌΠ΅ΡΠ΅ΡΠ½ΠΈ ΡΠ΅ΡΡΠΎΠ²ΠΈ Π΄Π½ΠΈ ΠΎΡ Π°Π²Π³ΡΡΡ Π΄ΠΎ ΡΠ΅Π²ΡΡΠ°ΡΠΈ, Π±ΡΡ
Π° ΠΏΠΎΠ΄Π»ΠΎΠΆΠ΅Π½ΠΈ Π½Π° Π»ΠΈΠΏΠΈΠ΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΏΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° Π½Π° Roese-Gottlieb. ΠΡΡ
Π° ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈ Π°Π½Π°Π»ΠΈΠ·ΠΈ Π½Π° Π²Π°ΡΠΈΠ°Π½ΡΠ° Π·Π° Π²ΡΡΠΊΠ° ΠΌΠ°ΡΡΠ½Π° ΠΊΠΈΡΠ΅Π»ΠΈΠ½Π° (ΠΠ), Π²ΠΊΠ»ΡΡΠ²Π°ΠΉΠΊΠΈ Π΅ΡΠ΅ΠΊΡΠΈΡΠ΅ Π½Π° ΡΠΈΡΠ΅ΠΌΠ°ΡΠ° Π½Π° ΠΎΡΠ³Π»Π΅ΠΆΠ΄Π°Π½Π΅, ΡΠ΅ΡΡΠΎΠ²ΠΈΡ Π΄Π΅Π½, ΠΌΠ»Π΅ΡΠ½ΠΎΡΡΡΠ° ΠΈ ΠΌΠ°ΡΠ»Π΅Π½ΠΎΡΡΡΠ°. ΠΠ΅ΡΠ΅ ΡΡΡΠ°Π½ΠΎΠ²Π΅Π½ΠΎ, ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠ° Π½Π° ΠΎΡΠ³Π»Π΅ΠΆΠ΄Π°Π½Π΅ Π΅ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ΅Π½ ΠΈΠ·ΡΠΎΡΠ½ΠΈΠΊ Π½Π° Π²Π°ΡΠΈΡΠ°Π½Π΅ Π½Π° Π²ΡΠΈΡΠΊΠΈ ΠΎΡΠ΄Π΅Π»Π½ΠΈ ΠΌΠΎΠ½ΠΎΠ½Π΅Π½Π°ΡΠΈΡΠ΅Π½ΠΈ
ΠΈ ΠΏΠΎΠ»ΠΈΠ½Π΅Π½Π°ΡΠΈΡΠ΅Π½ΠΈ (ΠΠΠΠ) ΠΠ, ΠΊΠ°ΠΊΡΠΎ ΠΈ βΠΠΠΠ. ΠΡΠΈΡΠΊΠΈ ΠΠΠΠ, Ρ ΠΈΠ·ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ Π½Π° C20:3n3 ΠΈ C20:2n6, ΠΏΠΎΠΊΠ°Π·Π²Π°Ρ ΠΏΠΎ-Π΄ΠΎΠ±ΡΠΈ ΡΡΠΎΠΉΠ½ΠΎΡΡΠΈ Π² ΠΌΠ»ΡΠΊΠΎΡΠΎ ΠΎΡ Π±ΠΈΠ²ΠΎΠ»ΠΈΡΠΈΡΠ΅ Π½Π° ΠΏΠ°ΡΠ° β ΠΏΠΎΠ²Π΅ΡΠ΅ ΠΎΡ Π΄Π²ΡΠΊΡΠ°ΡΠ½Π° ΡΠ°Π·Π»ΠΈΠΊΠ° Π² ΡΡΠΌΠ°ΡΠ° ΠΎΡ ΠΊΠΎΠ½ΡΠ³ΠΈΡΠ°Π½ΠΈΡΠ΅ Π»ΠΈΠ½ΠΎΠ»ΠΎΠ²ΠΈ ΠΊΠΈΡΠ΅Π»ΠΈΠ½ΠΈ (0,913%) ΠΈ Π² ΡΠ°ΡΡΠ½ΠΎΡΡ Π² C18:2c9t11 (0,829%), Π² Π°Π»ΡΠ°-Π»ΠΈΠ½ΠΎΠ»Π΅Π½ΠΎΠ²Π° (0,145%) ΠΈ Π³Π°ΠΌΠ°-Π»ΠΈΠ½ΠΎΠ»Π΅Π½ΠΎΠ²Π° (0,502%) ΠΊΠΈΡΠ΅Π»ΠΈΠ½Π°, ΠΊΠ°ΠΊΡΠΎ ΠΈ Π² ΠΎΠΌΠ΅Π³Π°-3 (n3), ΠΏΡΠ°Π²Π΅ΠΉΠΊΠΈ ΡΡΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ΡΠΎ n6/n3 ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΎ ΠΏΠΎ-Π½ΠΈΡΠΊΠΎ (1,99). Π’ΠΎΠ²Π° ΡΠ΅ ΠΎΡΠ½Π°ΡΡ Π΄ΠΎ Π³ΠΎΠ»ΡΠΌΠ° ΡΡΠ΅ΠΏΠ΅Π½ Π΄ΠΎ ΡΡΠ°Π½Ρ-Π‘18:1 (4,027%), Π² ΡΠ°ΡΡΠ½ΠΎΡΡ C18:1t11 (2,323%), ΠΈ Π² ΠΏΠΎ-ΠΌΠ°Π»ΠΊΠ° Π΄ΠΎ ΠΈΠ½Π΄Π΅ΠΊΡΠ° Π½Π° Π°ΡΠ΅ΡΠΎΠ³Π΅Π½Π½ΠΎΡΡ (2,44) ΠΈ ΡΡΠΎΠΌΠ±ΠΎΠ³Π΅Π½Π½ΠΎΡΡ (3,21). ΠΠΎΠΊΠ°ΡΠΎ C18:4n3 ΡΠ΅ ΠΏΠΎΠ²ΠΈΡΠ°Π²Π°, C18:1t11 ΠΈ Π³Π°ΠΌΠ°-Π»ΠΈΠ½ΠΎΠ»Π΅Π½ΠΎΠ²Π°ΡΠ° ΠΊΠΈΡΠ΅Π»ΠΈΠ½Π° Π½Π°ΠΌΠ°Π»ΡΠ²Π°Ρ Ρ Π½Π°ΠΏΡΠ΅Π΄Π²Π°Π½Π΅ Π½Π° ΠΏΠ°ΡΠΈΡΠ½ΠΈΡ ΡΠ΅Π·ΠΎΠ½, ΠΊΠ°ΠΊΡΠΎ ΠΈ ΠΊΠΎΠ½ΡΠ³ΠΈΡΠ°Π½ΠΈΡΠ΅ Π»ΠΈΠ½ΠΎΠ»ΠΎΠ²ΠΈ ΠΊΠΈΡΠ΅Π»ΠΈΠ½ΠΈ Ρ ΠΈΠ·ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅
Π½Π° ΠΏΠΈΠΊΠ° ΠΏΡΠ΅Π· Π΄Π΅ΠΊΠ΅ΠΌΠ²ΡΠΈ. C20:5n3, C22:5n3 ΠΈ C20:3n6 ΡΠ΅ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΠΈΡΠ°Ρ Ρ ΠΏΠΎΠ΄ΠΎΠ±Π΅Π½, ΠΎΡΠ΅ ΠΏΠΎ-ΡΠΈΠ»Π½ΠΎ ΠΈΠ·ΡΠ°Π·Π΅Π½ ΠΏΠΈΠΊ
ΠΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈ Π½Π° Π»Π°ΠΊΡΠ°ΡΠΈΠΎΠ½Π½Π°ΡΠ° ΠΊΡΠΈΠ²Π° Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ ΠΎΡ ΠΏΡΠΎΠ΄ΡΠ»ΠΆΠΈΡΠ΅Π»Π½ΠΎΡΡΡΠ° Π½Π° Π»Π°ΠΊΡΠ°ΡΠΈΡ ΠΏΡΠΈ Π±ΠΈΠ²ΠΎΠ»ΠΈΡΠΈ ΠΎΡ Π΄Π²Π΅ ΡΠ°Π·Π»ΠΈΡΠ½ΠΈ ΡΠΈΡΡΠ΅ΠΌΠΈ Π½Π° ΠΎΡΠ³Π»Π΅ΠΆΠ΄Π°Π½Π΅
Buffaloes from intensive (farm 1 - Fm1; 438 normal, 115 short lactations) and pasture (farm 2 - Fm2; 330 + 58 lactations) system were assigned to study lactation curve via ANOVA (LSMLMW and MIXMDL) per each 10-day period (βtendayβ), as well as overall (PI1) and post-peak (PIP) persistency. Greatest is the effect of parity and season, also of year
on 2nd-12th tenday. Persistency is affected by parity, year and season of calving, and especially by peak month and DIM (Pβ€0.001). The curves showed peak averagely at 2nd tenday in both herds. Compared to the buffaloes on pasture, Fm1 has significantly lower milk in initial two and in 15th to 21st tendays, defining slower decline to mid-lactation and faster
after that. These differences in the curves predetermine a non-significant difference in PI1 between Fm1 and Fm2 (0.932 and 0.940) and a significant but still small superiority in PIP of Fm2 (0.893) over Fm1 (0.880). The lactations below 210 days are 17.8%, persistency being 0.859 to 0.742, and peak by 17 to 32% worse than normal lactation. Long and very long lactationsβ persistency is 0.923 and 0.950. Only very long lactations have Π° typical curve β 4th tenday peak, by 10% lower than normal lactation.ΠΡΡ
Π° Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈ Π±ΠΈΠ²ΠΎΠ»ΠΈΡΠΈ ΠΎΡ ΠΈΠ½ΡΠ΅Π½Π·ΠΈΠ²Π½Π° (Fm1 β 438 Π½ΠΎΡΠΌΠ°Π»Π½ΠΈ ΠΈ 115 ΠΊΡΡΠΈ Π»Π°ΠΊΡΠ°ΡΠΈΠΈ) ΠΈ ΠΏΠ°ΡΠΈΡΠ½Π° (Fm2 - 330 + 58 Π»Π°ΠΊΡΠ°ΡΠΈΠΈ) ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡ Π½Π° ΠΎΡΠ³Π»Π΅ΠΆΠ΄Π°Π½Π΅, Π·Π° ΠΏΡΠΎΡΡΠ²Π°Π½Π΅ Π½Π° Π»Π°ΠΊΡΠ°ΡΠΈΠΎΠ½Π½Π°ΡΠ° ΠΊΡΠΈΠ²Π° ΡΡΠ΅Π· ANOVA (LSMLMW ΠΈ MIXMDL) Π·Π° Π²ΡΡΠΊΠ° 10-Π΄Π½Π΅Π²ΠΊΠ°, ΠΊΠ°ΠΊΡΠΎ ΠΈ Π½Π° ΠΎΠ±ΡΠΎΡΠΎ (PI1) ΠΈ ΡΠ»Π΅Π΄-ΠΏΠΈΠΊΠΎΠ²ΠΎ (PIP) ΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²ΠΎ. ΠΠ°ΠΉ-Π·Π½Π°ΡΠΈΠΌ Π΅ Π΅ΡΠ΅ΠΊΡΡΡ Π½Π° ΠΏΠΎΡΠ΅Π΄Π½Π°ΡΠ°
Π»Π°ΠΊΡΠ°ΡΠΈΡ ΠΈ ΡΠ΅Π·ΠΎΠ½Π°,, ΠΊΠ°ΠΊΡΠΎ ΠΈ Π½Π° Π³ΠΎΠ΄ΠΈΠ½Π°ΡΠ° Π·Π° 2-ΡΠ°β12-ΡΠ° Π΄Π΅ΡΠ΅ΡΠ΄Π½Π΅Π²ΠΊΠ°. ΠΠΎΡΡΠΎΡΠ½ΡΡΠ²ΠΎΡΠΎ ΡΠ΅ Π²Π»ΠΈΡΠ΅ ΠΎΡ ΠΏΠΎΡΠ΅Π΄Π½Π°ΡΠ° Π»Π°ΠΊΡΠ°ΡΠΈΡ, Π³ΠΎΠ΄ΠΈΠ½Π°ΡΠ°, ΡΠ΅Π·ΠΎΠ½Π°, ΠΈ ΠΎΡΠΎΠ±Π΅Π½ΠΎ ΠΎΡ ΠΏΠΈΠΊΠΎΠ²ΠΈΡ ΠΌΠ΅ΡΠ΅Ρ ΠΈ Π΄ΠΎΠΉΠ½ΠΈΡΠ΅ Π΄Π½ΠΈ (Pβ€0.001). ΠΠΈΠΊΡΡ Π΅ ΡΡΠ΅Π΄Π½ΠΎ ΠΏΡΠ΅Π· 2-ΡΠ° Π΄Π΅ΡΠ΅ΡΠ΄Π½Π΅Π²ΠΊΠ° Π² Π΄Π²Π΅ΡΠ΅ ΡΡΠ°Π΄Π°. Π ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Ρ Π±ΠΈΠ²ΠΎΠ»ΠΈΡΠΈΡΠ΅ Π½Π° ΠΏΠ°ΡΠ°, Fm1 ΠΈΠΌΠ° Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΠΎ ΠΏΠΎ-Π½ΠΈΡΠΊΠ° ΠΌΠ»Π΅ΡΠ½ΠΎΡΡ Π² ΠΏΡΡΠ²ΠΈΡΠ΅
Π΄Π²Π΅ ΠΈ Π² 15ΡΠ°β21Π²Π° Π΄Π΅ΡΠ΅ΡΠ΄Π½Π΅Π²ΠΊΠ°, Π΄Π΅ΡΠΈΠ½ΠΈΡΠ°ΠΉΠΊΠΈ ΠΏΠΎ-Π±Π°Π²Π΅Π½ ΡΠΏΠ°Π΄ Π΄ΠΎ ΡΡΠ΅Π΄Π°ΡΠ° Π½Π° Π»Π°ΠΊΡΠ°ΡΠΈΡΡΠ° ΠΈ ΠΏΠΎ-Π±ΡΡΠ· ΡΠ»Π΅Π΄ ΡΠΎΠ²Π°. Π’Π΅Π·ΠΈ ΡΠ°Π·Π»ΠΈΠΊΠΈ Π² ΠΊΡΠΈΠ²ΠΈΡΠ΅ ΠΏΡΠ΅Π΄ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡ Π½Π΅Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½Π° ΡΠ°Π·Π»ΠΈΠΊΠ° Π² PI1 ΠΌΠ΅ΠΆΠ΄Ρ Fm1 ΠΈ Fm2 (0.932 ΠΈ 0.940) ΠΈ ΠΈ ΠΌΠ°Π»ΠΊΠΎ Π½ΠΎ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΠΎ ΠΏΡΠ΅Π²ΡΠ·Ρ
ΠΎΠ΄ΡΡΠ²ΠΎ Π² PIP Π½Π° Fm2 (0.893) ΡΠΏΡΡΠΌΠΎ Fm1 (0.880). ΠΠ°ΠΊΡΠ°ΡΠΈΠΈΡΠ΅ ΠΏΠΎΠ΄ 210 Π΄Π½ΠΈ ΡΡΡΡΠ°Π²Π»ΡΠ²Π°Ρ 17,8%,
ΠΊΠ°ΡΠΎ ΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²ΠΎΡΠΎ Π΅ ΠΎΡ 0,859 Π΄ΠΎ 0,742, Π° ΠΏΠΈΠΊΠ° Π΅ ΡΡΡ 17 Π΄ΠΎ 32% ΠΏΠΎ-Π½ΠΈΡΡΠΊ ΠΎΡ Π½ΠΎΡΠΌΠ°Π»Π½Π°ΡΠ° Π»Π°ΠΊΡΠ°ΡΠΈΡ. ΠΠΎΡΡΠΎΡΠ½ΡΡΠ²ΠΎΡΠΎ Π½Π° Π΄ΡΠ»Π³ΠΈΡΠ΅ ΠΈ ΠΌΠ½ΠΎΠ³ΠΎ Π΄ΡΠ»Π³ΠΈΡΠ΅ Π»Π°ΠΊΡΠ°ΡΠΈΠΈ Π΅ 0,923 ΠΈ 0,950. Π‘Π°ΠΌΠΎ ΠΌΠ½ΠΎΠ³ΠΎ Π΄ΡΠ»Π³ΠΈΡΠ΅ Π»Π°ΠΊΡΠ°ΡΠΈΠΈ ΠΈΠΌΠ°Ρ ΡΠΈΠΏΠΈΡΠ½Π° ΠΊΡΠΈΠ²Π° β ΠΏΠΈΠΊ Π² ΡΠ΅ΡΠ²ΡΡΡΠΎ Π΄Π΅ΡΠ΅ΡΠ΄Π½Π΅Π²ΠΈΠ΅, Ρ 10% ΠΏΠΎ-Π½ΠΈΡΡΠΊ ΠΎΡ Π½ΠΎΡΠΌΠ°Π»Π½Π°ΡΠ° Π»Π°ΠΊΡΠ°ΡΠΈΡ
Basic methods for investigating and proving sickle-cell anemia
ΠΡΠ²Π΅Π΄Π΅Π½ΠΈΠ΅: Π‘ΡΡΠΏΠΎΠ²ΠΈΠ΄Π½ΠΎ-ΠΊΠ»Π΅ΡΡΡΠ½Π°ΡΠ° Π°Π½Π΅ΠΌΠΈΡ (Π‘ΠΠ) Π΅ Π³Π΅Π½Π΅ΡΠΈΡΠ½ΠΎ Π΄Π΅ΡΠ΅ΡΠΌΠΈΠ½ΠΈΡΠ°Π½ΠΎ Π·Π°Π±ΠΎΠ»ΡΠ²Π°Π½Π΅, ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ²Π°ΡΠΎ ΡΠ΅ΡΠΈΠΎΠ·Π΅Π½ ΠΎΠ±ΡΠ΅ΡΡΠ²Π΅Π½ Π·Π΄ΡΠ°Π²Π΅Π½ ΠΏΡΠΎΠ±Π»Π΅ΠΌ Π½Π΅ ΡΠ°ΠΌΠΎ Π·Π° ΡΡΡΠ°Π½ΠΈΡΠ΅ Ρ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΠΎ Π²ΠΈΡΠΎΠΊΠ° ΡΠ΅ΡΡΠΎΡΠ° (ΠΡΡΠΈΠΊΠ°, ΠΠ·ΠΈΡ, ΠΠΌΠ΅ΡΠΈΠΊΠ°, Π‘ΡΠ΅Π΄ΠΈΠ·Π΅ΠΌΠ½ΠΎΠΌΠΎΡΠΈΠ΅), Π½ΠΎ ΠΈ Π·Π° ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΠΎΡ Π΅Π²ΡΠΎΠΏΠ΅ΠΉΡΠΊΠΈΡΠ΅ ΡΡΡΠ°Π½ΠΈ, ΠΊΡΠ΄Π΅ΡΠΎ ΡΠ΅ Π½Π°Π±Π»ΡΠ΄Π°Π²Π° Π½Π΅ΠΏΡΠ΅ΠΊΡΡΠ½Π°ΡΠΎ Π½Π°ΡΠ°ΡΡΠ²Π°Π½Π΅ Π½Π° ΡΠ΅ΡΡΠΎΡΠ°ΡΠ° Π½Π° ΡΠΎΠ²Π° Π·Π°Π±ΠΎΠ»ΡΠ²Π°Π½Π΅. Π¦Π΅Π»: ΠΠ° ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΈ, ΠΈΠ·ΠΏΠΎΠ»Π·Π²Π°Π½ΠΈ Π·Π° ΡΠΊΡΠΈΠ½ΠΈΡΠ°Π½Π΅ ΠΈ Π΄ΠΈΠ°Π³Π½ΠΎΠ·Π° Π½Π° Π‘ΠΠ. ΠΠΈΡΠΊΡΡΠΈΡ: ΠΠ΅ΡΠΎΠ΄ΠΈΡΠ΅, ΠΈΠ·ΠΏΠΎΠ»Π·Π²Π°Π½ΠΈ ΠΏΡΠΈ ΡΠΊΡΠΈΠ½ΠΈΡΠ°Π½Π΅ ΠΈ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠΈΡΠ°Π½Π΅ Π½Π° Π‘ΠΠ ΡΠ° Π΄Π²Π° ΠΎΡΠ½ΠΎΠ²Π½ΠΈ ΡΠΈΠΏΠ°: ΡΡΡΠΈΠ½Π½ΠΈ ΠΈ Π²ΠΈΡΠΎΠΊΠΎ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΠ·ΠΈΡΠ°Π½ΠΈ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈ. Π ΡΡΠΈΠ½Π½ΠΈΡΠ΅ ΡΠ΅ΡΡΠΎΠ²Π΅ Π²ΠΊΠ»ΡΡΠ²Π°Ρ ΠΠΠ, Π±ΠΈΠΎΡ
ΠΈΠΌΠΈΡΠ½ΠΈ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ Π·Π° Π΄ΠΎΠΊΠ°Π·Π²Π°Π½Π΅ Π½Π° Ρ
Π΅ΠΌΠΎΠ»ΠΈΠ·Π° in vivo, ΠΈΠ·ΡΠ»Π΅Π΄Π²Π°Π½Π΅ Π½Π° ΡΡΠΈΠ½Π°, ΠΊΠ°ΠΊΡΠΎ ΠΈ ΡΠΊΡΠΈΠ½ΠΈΡΠ°ΡΠΈΡΠ΅ ΡΠ΅ΡΡΠΎΠ²Π΅ Π·Π° Π΄ΠΎΠΊΠ°Π·Π²Π°Π½Π΅ Π½Π°Π»ΠΈΡΠΈΠ΅ΡΠΎ Π½Π° HbS - ΡΠ΅ΡΡΠΎΠ²Π΅ Π·Π° ΡΠ°Π·ΡΠ²ΠΎΡΠΈΠΌΠΎΡΡ, ΡΠ΅ΡΡΠΎΠ²Π΅, ΠΏΡΠ΅Π΄ΠΈΠ·Π²ΠΈΠΊΠ²Π°ΡΠΈ ΠΏΡΠΎΠΌΡΠ½Π° Π²ΡΠ² ΡΠΎΡΠΌΠ°ΡΠ° Π½Π° Π΅ΡΠΈΡΡΠΎΡΠΈΡΠΈΡΠ΅ ΠΈ Π΄Ρ. ΠΡ ΠΈΠ·ΠΊΠ»ΡΡΠΈΡΠ΅Π»Π½ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π·Π° ΠΏΠΎΡΠ²ΡΡΠΆΠ΄Π°Π²Π°Π½Π΅ Π½Π° Π΄ΠΈΠ°Π³Π½ΠΎΠ·Π° Π΅ ΠΈΠ·ΠΏΠΎΠ»Π·Π²Π°Π½Π΅ΡΠΎ Π½Π° Π²ΠΈΡΠΎΠΊΠΎ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΠ·ΠΈΡΠ°Π½ΠΈ ΡΠ΅Ρ
Π½ΠΈΠΊΠΈ Π·Π° ΡΠ°Π·Π΄Π΅Π»ΡΠ½Π΅ Π½Π° Π±Π΅Π»ΡΡΡΠΈ ΠΊΠ°ΡΠΎ Π΅Π»Π΅ΠΊΡΡΠΎΡΠΎΡΠ΅Π·Π° ΠΈ Π²ΠΈΡΠΎΠΊΠΎΠ΅ΡΠ΅ΠΊΡΠΈΠ²Π½Π° ΡΠ΅ΡΠ½Π° Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΡ (HPLC), ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΠΈ Π°Π±Π½ΠΎΡΠΌΠ½ΠΈΡΠ΅ Ρ
Π΅ΠΌΠΎΠ³Π»ΠΎΠ±ΠΈΠ½ΠΎΠ²ΠΈ Π²Π°ΡΠΈΠ°Π½ΡΠΈ. ΠΠ° Π½ΡΠΆΠ΄ΠΈΡΠ΅ Π½Π° ΠΏΡΠ΅Π½Π°ΡΠ°Π»Π½Π°ΡΠ° Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠ° ΡΠ΅ ΠΈΠ·ΠΏΠΎΠ»Π·Π²Π° ΠΈ ΠΠΠ Π°Π½Π°Π»ΠΈΠ· Π·Π° Π΄ΠΎΠΊΠ°Π·Π²Π°Π½Π΅ Π½Π° ΡΠΎΡΠΊΠΎΠ²Π° ΠΌΡΡΠ°ΡΠΈΡ Π² Π³Π΅Π½Π° Π·Π° Π±Π΅ΡΠ° Π²Π΅ΡΠΈΠ³Π°ΡΠ° Π½Π° Π³Π»ΠΎΠ±ΠΈΠ½ΠΎΠ²Π°ΡΠ° ΠΌΠΎΠ»Π΅ΠΊΡΠ»Π°. ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅: ΠΠ΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ Π΅ Π΄Π° ΡΠ΅ ΠΏΠΎΠ·Π½Π°Π²Π°Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΠΈΡΠ΅ Π²ΠΈΠ΄ΠΎΠ²Π΅ ΠΌΠ΅ΡΠΎΠ΄ΠΈ Π·Π° ΡΠΊΡΠΈΠ½ΠΈΡΠ°Π½Π΅ ΠΈ Π΄ΠΈΠ°Π³Π½ΠΎΠ·Π° Π½Π° Π‘ΠΠ, Π·Π° Π΄Π° Π΅ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»Π½ΠΎ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π΅Π½ ΠΈ Π±ΡΡΠ· Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠ½ΠΈΡΡ ΠΏΡΠΎΡΠ΅Ρ ΠΏΡΠΈ ΡΠΎΠ²Π° ΡΠ°Π·ΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½ΠΎ ΠΈ Π½Π΅ ΡΡΠ΄ΠΊΠΎ ΡΠ΅ΠΆΠΊΠΎ ΠΏΡΠΎΡΠΈΡΠ°ΡΠΎ Π½Π°ΡΠ»Π΅Π΄ΡΡΠ²Π΅Π½ΠΎ Π·Π°Π±ΠΎΠ»ΡΠ²Π°Π½Π΅.Introduction: The sickle-cell anaemia (SCA) is a genetically determined disease, that is a major public health issue amongst not only the countries where it is traditionally quite common (Africa, Asia, America and the Mediterranean), but also the majority of European countries, where a significant increase of the frequency of the disease is observed. Aim: To present methods used for screening and diagnose of SCA. Discussion: The methods used for screening and diagnose of SCA can be classified into two main categories - routine ones and highly specialised laboratory methods. The routine tests include complete blood count, biochemical parameters to prove in vivo haemolysis, urine tests and the screening tests for presence of HbS e.g. sickling tests and solubility tests. In order to confirm the diagnosis of SCA the usage of protein separation techniques such as electrophoresis and high-performance liquid chromatography (HPLC) for detection of abnormal hemoglobin variants is of high importance. Concerning prenatal diagnostics DNA analysis is also used for detection of point mutation in the fetus beta gene of globin molecule. Conclusion: In order to ensure with maximum of effectiveness the diagnostic process of this common hereditary disease, a good knowledge of all available screening and diagnostic methods is needed
Study of the Hyperon-Nucleon Interaction via Final-State Interactions in Exclusive Reactions
A novel approach that allows access to long-sought information on the Hyperon-Nucleon (YN) interaction was developed by producing a hyperon beam within a few-body nuclear system, and studying final-state interactions. The determination of polarisation observables, and specifically the beam spin asymmetry, in exclusive reactions allows a detailed study of the various final-state interactions and provides us with the tools needed to isolate kinematic regimes where the YN interaction dominates. High-statistics data collected using the CLAS detector housed in Hall-B of the Thomas Jefferson laboratory allows us to obtain a large set of polarisation observables and place stringent constraints on the underlying dynamics of the YN interaction
Study of the Hyperon-Nucleon Interaction in Exclusive Photoproduction off the Deuteron
The study of final-state interactions in exclusive hyperon photoproduction off the deuteron is a promising approach to extract information about the hyperon-nucleon (YN) interaction. First preliminary results on the azimuthal asymmetry β, as well as the polarization transfer coeffcients Ox, Oz, Cx, and Cz for the reaction Ξ³d β K+ Ξn initiated with linearly and circularly polarized photon beam are presented. The data were taken with the CLAS detector in Hall B of Jefferson Lab during the E06-103 experiment. The large kinematic coverage of the CLAS, combined with the exceptionally high quality of the experimental data, allows identifying and selecting final-state interaction events to extract single- and double-polarization observables and their kinematical dependencies
Pregnancy Rates Associated with Oxidative Stress after Estrus Synchronization of Bulgarian Murrah Buffaloes in Breeding and Non-Breeding Season
Background: The current study aims to measure the effect of oxidative stress on the pregnancy rates of Bulgarian Murrah buffaloes during the breeding and non-breeding season.
Methods: The study group consisted of 24 mature buffaloes more than 40 days after parturition. The following parameters were measured: Reactive Oxygen Species (ROS) products, Ascorbate radicals, Malondialdehyde (MDA), Nitric Oxide (NO), Super Oxide Dismutase (SOD), Glutathione peroxidase (GSH-Px), Protein Carbonyl Content (PPC), and total Nitric oxide. The Presynch/Ovsynch protocol was used for estrus synchronization.
Results: A statistically significant increase in ROS products were measured in blood serum during the breeding season compared with the non-breeding season. The highest levels measured were in non-pregnant buffaloes during the breeding season. High levels of oxidative stress were registered due to low SOD activity in buffaloes during the breeding season compared to SOD activity during the non-breeding season. The highest SOD activity was observed in non-pregnant buffaloes during the summer season. The lowest GSH-Px levels were observed in non-pregnant buffaloes during both study periods. During the breeding season, concentrations of total NO and PPC were elevated.
Conclusion: Comparing the obtained results for oxidative stress and antioxidant activity concerning pregnancy rate depending on the season showed that pregnancy in buffaloes during the breeding season was realized at higher values of NO and SOD. Increased oxidative stress was observed, resulting in a statistically significant increase in serum ROS products, as well as decreased SOD activity in buffaloes during the breeding season
Beam-spin asymmetry for hyperon photoproduction off the neutron
We report a new measurement of the beam-spin asymmetry
for the reaction using quasi-free
neutrons in a liquid-deuterium target. The new dataset includes data at
previously unmeasured photon energy and angular ranges, thereby providing new
constraints on partial wave analyses used to extract properties of the excited
nucleon states. The experimental data were obtained using the CEBAF Large
Acceptance Spectrometer (CLAS), housed in Hall B of the Thomas Jefferson
National Accelerator Facility (JLab). The CLAS detector measured reaction
products from a liquid-deuterium target produced by an energy-tagged, linearly
polarised photon beam with energies in the range 1.1 to 2.3 GeV. Predictions
from an isobar model indicate strong sensitivity to ,
, and , with the latter being a state not
considered in previous photoproduction analyses. When our data are incorporated
in the fits of partial-wave analyses, one observes significant changes in
- couplings of the resonances which have small branching ratios to
the channel.Comment: 9 pages, 4 figures, Hadron Spectroscop