22 research outputs found

    ΠœΠ°ΡΡ‚Π½ΠΎΠΊΠΈΡΠ΅Π»ΠΈΠ½Π΅Π½ ΡΡŠΡΡ‚Π°Π² Π½Π° биволско мляко ΠΏΡ€ΠΈ ΠΈΠ½Ρ‚Π΅Π½Π·ΠΈΠ²Π½ΠΎ ΠΈ пасищно ΠΎΡ‚Π³Π»Π΅ΠΆΠ΄Π°Π½Π΅

    Get PDF
    With the aim to assess the fatty-acid profile of buffalo milk from intensive and pasture farming system, the study included two farms. Farm 1 assigned 9 non-grazing buffaloes raised on green fodder or maize silage, and Farm 2 – 8 buffaloes on pasture until November and hay in winter. Individual samples of milk, taken in 7 monthly test days from August to February, were subjected to the Roese-Gottlieb lipid analysis. Analyses of variance were carried out per each fatty acid (FA), including the effects of farming, test day, milk yield and fat content. Farming system was established to be significant source of variation of all individual monounsaturated and polyunsaturated FAs (PUFA) and total PUFA. All PUFAs, except C20:3n3 and C20:2n6, showed better values in the milk from the buffaloes on pasture – more than 2-fold difference in total conjugated linoleic acids (0.913%) and rumenic acid (0.829%) in particular, in alpha-linolenic (0.145%) and gamma-linolenic (0.502%) acid, and in omega-3 FAs (n3), rendering n6/n3 ratio definitely lower (1.99). This applies also to greater extent to trans-C18:1 (4.027%) and vaccenic acid (2.323%) in particular, and to lesser to atherogenicity (2.44) and thrombogenicity (3.21) index. While C18:4n3 was found to increase, vaccenic and gammalinolenic acid decline throughout grazing season, as well as conjugated linoleic acids with the exception of a peak in December. C20:5n3, C22:5n3 and C20:3n6 are characterized by such even more pronounced peak.Π‘ Ρ†Π΅Π» ΠΎΡ†Π΅Π½ΠΊΠ° Π½Π° мастнокисСлия ΡΡŠΡΡ‚Π°Π² Π½Π° биволското мляко ΠΎΡ‚ ΠΈΠ½Ρ‚Π΅Π½Π·ΠΈΠ²Π½Π° ΠΈ пасищна систСма Π·Π° ΠΎΡ‚Π³Π»Π΅ΠΆΠ΄Π°Π½Π΅, Π² ΠΏΡ€ΠΎΡƒΡ‡Π²Π°Π½Π΅Ρ‚ΠΎ бяха Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈ Π΄Π²Π΅ Ρ„Π΅Ρ€ΠΌΠΈ. ΠžΡ‚ Ρ„Π΅Ρ€ΠΌΠ° 1 бяха Π²Π·Π΅Ρ‚ΠΈ 9 Π±ΠΈΠ²ΠΎΠ»ΠΈΡ†ΠΈ Π±Π΅Π· паша, Ρ…Ρ€Π°Π½Π΅Π½ΠΈ със Π·Π΅Π»Π΅Π½Π° маса ΠΈΠ»ΠΈ Ρ†Π°Ρ€Π΅Π²ΠΈΡ‡Π΅Π½ силаТ, Π° ΠΎΡ‚ Ρ„Π΅Ρ€ΠΌΠ° 2 – 8 Π±ΠΈΠ²ΠΎΠ»ΠΈΡ†ΠΈ Π½Π° пасищно ΠΎΡ‚Π³Π»Π΅ΠΆΠ΄Π°Π½Π΅ Π΄ΠΎ Π½ΠΎΠ΅ΠΌΠ²Ρ€ΠΈ ΠΈ Π½Π° сСно ΠΏΡ€Π΅Π· Π·ΠΈΠΌΠ°Ρ‚Π°. Π˜Π½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»Π½ΠΈΡ‚Π΅ ΠΏΡ€ΠΎΠ±ΠΈ мляко, Π²Π·Π΅Ρ‚ΠΈ Π² 7 мСсСчни тСстови Π΄Π½ΠΈ ΠΎΡ‚ август Π΄ΠΎ Ρ„Π΅Π²Ρ€ΡƒΠ°Ρ€ΠΈ, бяха ΠΏΠΎΠ΄Π»ΠΎΠΆΠ΅Π½ΠΈ Π½Π° Π»ΠΈΠΏΠΈΠ΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΏΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π½Π° Roese-Gottlieb. Бяха ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈ Π°Π½Π°Π»ΠΈΠ·ΠΈ Π½Π° варианса Π·Π° всяка мастна кисСлина (МК), Π²ΠΊΠ»ΡŽΡ‡Π²Π°ΠΉΠΊΠΈ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΡ‚Π΅ Π½Π° ситСмата Π½Π° ΠΎΡ‚Π³Π»Π΅ΠΆΠ΄Π°Π½Π΅, тСстовия Π΄Π΅Π½, млСчността ΠΈ маслСността. Π‘Π΅ΡˆΠ΅ установСно, Ρ‡Π΅ систСмата Π½Π° ΠΎΡ‚Π³Π»Π΅ΠΆΠ΄Π°Π½Π΅ Π΅ достовСрСн ΠΈΠ·Ρ‚ΠΎΡ‡Π½ΠΈΠΊ Π½Π° Π²Π°Ρ€ΠΈΡ€Π°Π½Π΅ Π½Π° всички ΠΎΡ‚Π΄Π΅Π»Π½ΠΈ мононСнаситСни ΠΈ полинСнаситСни (ПНМК) МК, ΠΊΠ°ΠΊΡ‚ΠΎ ΠΈ βˆ‘ΠŸΠΠœΠš. Всички ПНМК, с ΠΈΠ·ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ Π½Π° C20:3n3 ΠΈ C20:2n6, ΠΏΠΎΠΊΠ°Π·Π²Π°Ρ‚ ΠΏΠΎ-Π΄ΠΎΠ±Ρ€ΠΈ стойности Π² млякото ΠΎΡ‚ Π±ΠΈΠ²ΠΎΠ»ΠΈΡ†ΠΈΡ‚Π΅ Π½Π° паша – ΠΏΠΎΠ²Π΅Ρ‡Π΅ ΠΎΡ‚ Π΄Π²ΡƒΠΊΡ€Π°Ρ‚Π½Π° Ρ€Π°Π·Π»ΠΈΠΊΠ° Π² сумата ΠΎΡ‚ ΠΊΠΎΠ½ΡŽΠ³ΠΈΡ€Π°Π½ΠΈΡ‚Π΅ Π»ΠΈΠ½ΠΎΠ»ΠΎΠ²ΠΈ кисСлини (0,913%) ΠΈ Π² частност Π² C18:2c9t11 (0,829%), Π² Π°Π»Ρ„Π°-Π»ΠΈΠ½ΠΎΠ»Π΅Π½ΠΎΠ²Π° (0,145%) ΠΈ Π³Π°ΠΌΠ°-Π»ΠΈΠ½ΠΎΠ»Π΅Π½ΠΎΠ²Π° (0,502%) кисСлина, ΠΊΠ°ΠΊΡ‚ΠΎ ΠΈ Π² ΠΎΠΌΠ΅Π³Π°-3 (n3), ΠΏΡ€Π°Π²Π΅ΠΉΠΊΠΈ ΡΡŠΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅Ρ‚ΠΎ n6/n3 ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ ΠΏΠΎ-ниско (1,99). Π’ΠΎΠ²Π° сС отнася Π΄ΠΎ голяма стСпСн Π΄ΠΎ транс-Π‘18:1 (4,027%), Π² частност C18:1t11 (2,323%), ΠΈ Π² ΠΏΠΎ-ΠΌΠ°Π»ΠΊΠ° Π΄ΠΎ индСкса Π½Π° атСрогСнност (2,44) ΠΈ тромбогСнност (3,21). Π”ΠΎΠΊΠ°Ρ‚ΠΎ C18:4n3 сС повишава, C18:1t11 ΠΈ Π³Π°ΠΌΠ°-Π»ΠΈΠ½ΠΎΠ»Π΅Π½ΠΎΠ²Π°Ρ‚Π° кисСлина намаляват с Π½Π°ΠΏΡ€Π΅Π΄Π²Π°Π½Π΅ Π½Π° пасищния сСзон, ΠΊΠ°ΠΊΡ‚ΠΎ ΠΈ ΠΊΠΎΠ½ΡŽΠ³ΠΈΡ€Π°Π½ΠΈΡ‚Π΅ Π»ΠΈΠ½ΠΎΠ»ΠΎΠ²ΠΈ кисСлини с ΠΈΠ·ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ Π½Π° ΠΏΠΈΠΊΠ° ΠΏΡ€Π΅Π· Π΄Π΅ΠΊΠ΅ΠΌΠ²Ρ€ΠΈ. C20:5n3, C22:5n3 ΠΈ C20:3n6 сС Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΈΡ€Π°Ρ‚ с ΠΏΠΎΠ΄ΠΎΠ±Π΅Π½, ΠΎΡ‰Π΅ ΠΏΠΎ-силно ΠΈΠ·Ρ€Π°Π·Π΅Π½ ΠΏΠΈΠΊ

    ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈ Π½Π° Π»Π°ΠΊΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Π°Ρ‚Π° ΠΊΡ€ΠΈΠ²Π° Π² зависимост ΠΎΡ‚ ΠΏΡ€ΠΎΠ΄ΡŠΠ»ΠΆΠΈΡ‚Π΅Π»Π½ΠΎΡΡ‚Ρ‚Π° Π½Π° лактация ΠΏΡ€ΠΈ Π±ΠΈΠ²ΠΎΠ»ΠΈΡ†ΠΈ ΠΎΡ‚ Π΄Π²Π΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΈ систСми Π½Π° ΠΎΡ‚Π³Π»Π΅ΠΆΠ΄Π°Π½Π΅

    Get PDF
    Buffaloes from intensive (farm 1 - Fm1; 438 normal, 115 short lactations) and pasture (farm 2 - Fm2; 330 + 58 lactations) system were assigned to study lactation curve via ANOVA (LSMLMW and MIXMDL) per each 10-day period (β€œtenday”), as well as overall (PI1) and post-peak (PIP) persistency. Greatest is the effect of parity and season, also of year on 2nd-12th tenday. Persistency is affected by parity, year and season of calving, and especially by peak month and DIM (P≀0.001). The curves showed peak averagely at 2nd tenday in both herds. Compared to the buffaloes on pasture, Fm1 has significantly lower milk in initial two and in 15th to 21st tendays, defining slower decline to mid-lactation and faster after that. These differences in the curves predetermine a non-significant difference in PI1 between Fm1 and Fm2 (0.932 and 0.940) and a significant but still small superiority in PIP of Fm2 (0.893) over Fm1 (0.880). The lactations below 210 days are 17.8%, persistency being 0.859 to 0.742, and peak by 17 to 32% worse than normal lactation. Long and very long lactations’ persistency is 0.923 and 0.950. Only very long lactations have Π° typical curve – 4th tenday peak, by 10% lower than normal lactation.Бяха Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈ Π±ΠΈΠ²ΠΎΠ»ΠΈΡ†ΠΈ ΠΎΡ‚ ΠΈΠ½Ρ‚Π΅Π½Π·ΠΈΠ²Π½Π° (Fm1 – 438 Π½ΠΎΡ€ΠΌΠ°Π»Π½ΠΈ ΠΈ 115 къси Π»Π°ΠΊΡ‚Π°Ρ†ΠΈΠΈ) ΠΈ пасищна (Fm2 - 330 + 58 Π»Π°ΠΊΡ‚Π°Ρ†ΠΈΠΈ) тСхнология Π½Π° ΠΎΡ‚Π³Π»Π΅ΠΆΠ΄Π°Π½Π΅, Π·Π° ΠΏΡ€ΠΎΡƒΡ‡Π²Π°Π½Π΅ Π½Π° Π»Π°ΠΊΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Π°Ρ‚Π° ΠΊΡ€ΠΈΠ²Π° Ρ‡Ρ€Π΅Π· ANOVA (LSMLMW ΠΈ MIXMDL) Π·Π° всяка 10-Π΄Π½Π΅Π²ΠΊΠ°, ΠΊΠ°ΠΊΡ‚ΠΎ ΠΈ Π½Π° ΠΎΠ±Ρ‰ΠΎΡ‚ΠΎ (PI1) ΠΈ слСд-ΠΏΠΈΠΊΠΎΠ²ΠΎ (PIP) постоянство. Най-Π·Π½Π°Ρ‡ΠΈΠΌ Π΅ Π΅Ρ„Π΅ΠΊΡ‚ΡŠΡ‚ Π½Π° ΠΏΠΎΡ€Π΅Π΄Π½Π°Ρ‚Π° лактация ΠΈ сСзона,, ΠΊΠ°ΠΊΡ‚ΠΎ ΠΈ Π½Π° Π³ΠΎΠ΄ΠΈΠ½Π°Ρ‚Π° Π·Π° 2-ра–12-Ρ‚Π° дСсСтднСвка. ΠŸΠΎΡΡ‚ΠΎΡΠ½ΡΡ‚Π²ΠΎΡ‚ΠΎ сС влияС ΠΎΡ‚ ΠΏΠΎΡ€Π΅Π΄Π½Π°Ρ‚Π° лактация, Π³ΠΎΠ΄ΠΈΠ½Π°Ρ‚Π°, сСзона, ΠΈ особСно ΠΎΡ‚ пиковия мСсСц ΠΈ Π΄ΠΎΠΉΠ½ΠΈΡ‚Π΅ Π΄Π½ΠΈ (P≀0.001). ΠŸΠΈΠΊΡŠΡ‚ Π΅ срСдно ΠΏΡ€Π΅Π· 2-Ρ€Π° дСсСтднСвка Π² Π΄Π²Π΅Ρ‚Π΅ стада. Π’ сравнСниС с Π±ΠΈΠ²ΠΎΠ»ΠΈΡ†ΠΈΡ‚Π΅ Π½Π° паша, Fm1 ΠΈΠΌΠ° достовСрно ΠΏΠΎ-ниска млСчност Π² ΠΏΡŠΡ€Π²ΠΈΡ‚Π΅ Π΄Π²Π΅ ΠΈ Π² 15та–21Π²Π° дСсСтднСвка, Π΄Π΅Ρ„ΠΈΠ½ΠΈΡ€Π°ΠΉΠΊΠΈ ΠΏΠΎ-Π±Π°Π²Π΅Π½ спад Π΄ΠΎ срСдата Π½Π° лактацията ΠΈ ΠΏΠΎ-Π±ΡŠΡ€Π· слСд Ρ‚ΠΎΠ²Π°. Π’Π΅Π·ΠΈ Ρ€Π°Π·Π»ΠΈΠΊΠΈ Π² ΠΊΡ€ΠΈΠ²ΠΈΡ‚Π΅ прСдопрСдСлят нСдостовСрна Ρ€Π°Π·Π»ΠΈΠΊΠ° Π² PI1 ΠΌΠ΅ΠΆΠ΄Ρƒ Fm1 ΠΈ Fm2 (0.932 ΠΈ 0.940) ΠΈ ΠΈ ΠΌΠ°Π»ΠΊΠΎ Π½ΠΎ достовСрно ΠΏΡ€Π΅Π²ΡŠΠ·Ρ…ΠΎΠ΄ΡΡ‚Π²ΠΎ Π² PIP Π½Π° Fm2 (0.893) спрямо Fm1 (0.880). Π›Π°ΠΊΡ‚Π°Ρ†ΠΈΠΈΡ‚Π΅ ΠΏΠΎΠ΄ 210 Π΄Π½ΠΈ ΡΡŠΡΡ‚Π°Π²Π»ΡΠ²Π°Ρ‚ 17,8%, ΠΊΠ°Ρ‚ΠΎ постоянството Π΅ ΠΎΡ‚ 0,859 Π΄ΠΎ 0,742, Π° ΠΏΠΈΠΊΠ° Π΅ със 17 Π΄ΠΎ 32% ΠΏΠΎ-нисък ΠΎΡ‚ Π½ΠΎΡ€ΠΌΠ°Π»Π½Π°Ρ‚Π° лактация. ΠŸΠΎΡΡ‚ΠΎΡΠ½ΡΡ‚Π²ΠΎΡ‚ΠΎ Π½Π° Π΄ΡŠΠ»Π³ΠΈΡ‚Π΅ ΠΈ ΠΌΠ½ΠΎΠ³ΠΎ Π΄ΡŠΠ»Π³ΠΈΡ‚Π΅ Π»Π°ΠΊΡ‚Π°Ρ†ΠΈΠΈ Π΅ 0,923 ΠΈ 0,950. Π‘Π°ΠΌΠΎ ΠΌΠ½ΠΎΠ³ΠΎ Π΄ΡŠΠ»Π³ΠΈΡ‚Π΅ Π»Π°ΠΊΡ‚Π°Ρ†ΠΈΠΈ ΠΈΠΌΠ°Ρ‚ Ρ‚ΠΈΠΏΠΈΡ‡Π½Π° ΠΊΡ€ΠΈΠ²Π° – ΠΏΠΈΠΊ Π² Ρ‡Π΅Ρ‚Π²ΡŠΡ€Ρ‚ΠΎ дСсСтднСвиС, с 10% ΠΏΠΎ-нисък ΠΎΡ‚ Π½ΠΎΡ€ΠΌΠ°Π»Π½Π°Ρ‚Π° лактация

    Basic methods for investigating and proving sickle-cell anemia

    Get PDF
    Π’ΡŠΠ²Π΅Π΄Π΅Π½ΠΈΠ΅: Π‘ΡŠΡ€ΠΏΠΎΠ²ΠΈΠ΄Π½ΠΎ-ΠΊΠ»Π΅Ρ‚ΡŠΡ‡Π½Π°Ρ‚Π° анСмия (БКА) Π΅ Π³Π΅Π½Π΅Ρ‚ΠΈΡ‡Π½ΠΎ Π΄Π΅Ρ‚Π΅Ρ€ΠΌΠΈΠ½ΠΈΡ€Π°Π½ΠΎ заболяванС, прСдставляващо сСриозСн общСствСн Π·Π΄Ρ€Π°Π²Π΅Π½ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ Π½Π΅ само Π·Π° странитС с Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎ висока чСстота (Африка, Азия, АмСрика, Π‘Ρ€Π΅Π΄ΠΈΠ·Π΅ΠΌΠ½ΠΎΠΌΠΎΡ€ΠΈΠ΅), Π½ΠΎ ΠΈ Π·Π° мноТСство ΠΎΡ‚ СвропСйскитС страни, ΠΊΡŠΠ΄Π΅Ρ‚ΠΎ сС наблюдава Π½Π΅ΠΏΡ€Π΅ΠΊΡŠΡΠ½Π°Ρ‚ΠΎ нарастванС Π½Π° чСстотата Π½Π° Ρ‚ΠΎΠ²Π° заболяванС. Π¦Π΅Π»: Π”Π° прСдставим ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ, ΠΈΠ·ΠΏΠΎΠ»Π·Π²Π°Π½ΠΈ Π·Π° скриниранС ΠΈ Π΄ΠΈΠ°Π³Π½ΠΎΠ·Π° Π½Π° БКА. Дискусия: ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΡ‚Π΅, ΠΈΠ·ΠΏΠΎΠ»Π·Π²Π°Π½ΠΈ ΠΏΡ€ΠΈ скриниранС ΠΈ диагностициранС Π½Π° БКА са Π΄Π²Π° основни Ρ‚ΠΈΠΏΠ°: Ρ€ΡƒΡ‚ΠΈΠ½Π½ΠΈ ΠΈ високо спСциализирани Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ. Π ΡƒΡ‚ΠΈΠ½Π½ΠΈΡ‚Π΅ тСстовС Π²ΠΊΠ»ΡŽΡ‡Π²Π°Ρ‚ ПКК, Π±ΠΈΠΎΡ…ΠΈΠΌΠΈΡ‡Π½ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ Π·Π° Π΄ΠΎΠΊΠ°Π·Π²Π°Π½Π΅ Π½Π° Ρ…Π΅ΠΌΠΎΠ»ΠΈΠ·Π° in vivo, изслСдванС Π½Π° ΡƒΡ€ΠΈΠ½Π°, ΠΊΠ°ΠΊΡ‚ΠΎ ΠΈ скриниращитС тСстовС Π·Π° Π΄ΠΎΠΊΠ°Π·Π²Π°Π½Π΅ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅Ρ‚ΠΎ Π½Π° HbS - тСстовС Π·Π° разтворимост, тСстовС, ΠΏΡ€Π΅Π΄ΠΈΠ·Π²ΠΈΠΊΠ²Π°Ρ‰ΠΈ промяна във Ρ„ΠΎΡ€ΠΌΠ°Ρ‚Π° Π½Π° Π΅Ρ€ΠΈΡ‚Ρ€ΠΎΡ†ΠΈΡ‚ΠΈΡ‚Π΅ ΠΈ Π΄Ρ€. ΠžΡ‚ ΠΈΠ·ΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»Π½ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π·Π° ΠΏΠΎΡ‚Π²ΡŠΡ€ΠΆΠ΄Π°Π²Π°Π½Π΅ Π½Π° Π΄ΠΈΠ°Π³Π½ΠΎΠ·Π° Π΅ ΠΈΠ·ΠΏΠΎΠ»Π·Π²Π°Π½Π΅Ρ‚ΠΎ Π½Π° високо спСциализирани Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ Π·Π° раздСлянС Π½Π° Π±Π΅Π»Ρ‚ΡŠΡ†ΠΈ ΠΊΠ°Ρ‚ΠΎ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΡ„ΠΎΡ€Π΅Π·Π° ΠΈ високоСфСктивна Ρ‚Π΅Ρ‡Π½Π° хроматография (HPLC), опрСдСлящи Π°Π±Π½ΠΎΡ€ΠΌΠ½ΠΈΡ‚Π΅ Ρ…Π΅ΠΌΠΎΠ³Π»ΠΎΠ±ΠΈΠ½ΠΎΠ²ΠΈ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΈ. Π—Π° Π½ΡƒΠΆΠ΄ΠΈΡ‚Π΅ Π½Π° ΠΏΡ€Π΅Π½Π°Ρ‚Π°Π»Π½Π°Ρ‚Π° диагностика сС ΠΈΠ·ΠΏΠΎΠ»Π·Π²Π° ΠΈ Π”ΠΠš Π°Π½Π°Π»ΠΈΠ· Π·Π° Π΄ΠΎΠΊΠ°Π·Π²Π°Π½Π΅ Π½Π° Ρ‚ΠΎΡ‡ΠΊΠΎΠ²Π° мутация Π² Π³Π΅Π½Π° Π·Π° Π±Π΅Ρ‚Π° Π²Π΅Ρ€ΠΈΠ³Π°Ρ‚Π° Π½Π° Π³Π»ΠΎΠ±ΠΈΠ½ΠΎΠ²Π°Ρ‚Π° ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅: НСобходимо Π΅ Π΄Π° сС ΠΏΠΎΠ·Π½Π°Π²Π°Ρ‚ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΈΡ‚Π΅ Π²ΠΈΠ΄ΠΎΠ²Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ Π·Π° скриниранС ΠΈ Π΄ΠΈΠ°Π³Π½ΠΎΠ·Π° Π½Π° БКА, Π·Π° Π΄Π° Π΅ максимално Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π΅Π½ ΠΈ Π±ΡŠΡ€Π· диагностичният процСс ΠΏΡ€ΠΈ Ρ‚ΠΎΠ²Π° разпространСно ΠΈ Π½Π΅ рядко Ρ‚Π΅ΠΆΠΊΠΎ ΠΏΡ€ΠΎΡ‚ΠΈΡ‡Π°Ρ‰ΠΎ наслСдствСно заболяванС.Introduction: The sickle-cell anaemia (SCA) is a genetically determined disease, that is a major public health issue amongst not only the countries where it is traditionally quite common (Africa, Asia, America and the Mediterranean), but also the majority of European countries, where a significant increase of the frequency of the disease is observed. Aim: To present methods used for screening and diagnose of SCA. Discussion: The methods used for screening and diagnose of SCA can be classified into two main categories - routine ones and highly specialised laboratory methods. The routine tests include complete blood count, biochemical parameters to prove in vivo haemolysis, urine tests and the screening tests for presence of HbS e.g. sickling tests and solubility tests. In order to confirm the diagnosis of SCA the usage of protein separation techniques such as electrophoresis and high-performance liquid chromatography (HPLC) for detection of abnormal hemoglobin variants is of high importance. Concerning prenatal diagnostics DNA analysis is also used for detection of point mutation in the fetus beta gene of globin molecule. Conclusion: In order to ensure with maximum of effectiveness the diagnostic process of this common hereditary disease, a good knowledge of all available screening and diagnostic methods is needed

    Study of the Hyperon-Nucleon Interaction via Final-State Interactions in Exclusive Reactions

    Get PDF
    A novel approach that allows access to long-sought information on the Hyperon-Nucleon (YN) interaction was developed by producing a hyperon beam within a few-body nuclear system, and studying final-state interactions. The determination of polarisation observables, and specifically the beam spin asymmetry, in exclusive reactions allows a detailed study of the various final-state interactions and provides us with the tools needed to isolate kinematic regimes where the YN interaction dominates. High-statistics data collected using the CLAS detector housed in Hall-B of the Thomas Jefferson laboratory allows us to obtain a large set of polarisation observables and place stringent constraints on the underlying dynamics of the YN interaction

    Study of the Hyperon-Nucleon Interaction in Exclusive Photoproduction off the Deuteron

    Get PDF
    The study of final-state interactions in exclusive hyperon photoproduction off the deuteron is a promising approach to extract information about the hyperon-nucleon (YN) interaction. First preliminary results on the azimuthal asymmetry βˆ‘, as well as the polarization transfer coeffcients Ox, Oz, Cx, and Cz for the reaction Ξ³d β†’ K+ Ξ›n initiated with linearly and circularly polarized photon beam are presented. The data were taken with the CLAS detector in Hall B of Jefferson Lab during the E06-103 experiment. The large kinematic coverage of the CLAS, combined with the exceptionally high quality of the experimental data, allows identifying and selecting final-state interaction events to extract single- and double-polarization observables and their kinematical dependencies

    Pregnancy Rates Associated with Oxidative Stress after Estrus Synchronization of Bulgarian Murrah Buffaloes in Breeding and Non-Breeding Season

    Get PDF
    Background: The current study aims to measure the effect of oxidative stress on the pregnancy rates of Bulgarian Murrah buffaloes during the breeding and non-breeding season. Methods: The study group consisted of 24 mature buffaloes more than 40 days after parturition. The following parameters were measured: Reactive Oxygen Species (ROS) products, Ascorbate radicals, Malondialdehyde (MDA), Nitric Oxide (NO), Super Oxide Dismutase (SOD), Glutathione peroxidase (GSH-Px), Protein Carbonyl Content (PPC), and total Nitric oxide. The Presynch/Ovsynch protocol was used for estrus synchronization. Results: A statistically significant increase in ROS products were measured in blood serum during the breeding season compared with the non-breeding season. The highest levels measured were in non-pregnant buffaloes during the breeding season. High levels of oxidative stress were registered due to low SOD activity in buffaloes during the breeding season compared to SOD activity during the non-breeding season. The highest SOD activity was observed in non-pregnant buffaloes during the summer season. The lowest GSH-Px levels were observed in non-pregnant buffaloes during both study periods. During the breeding season, concentrations of total NO and PPC were elevated. Conclusion: Comparing the obtained results for oxidative stress and antioxidant activity concerning pregnancy rate depending on the season showed that pregnancy in buffaloes during the breeding season was realized at higher values of NO and SOD. Increased oxidative stress was observed, resulting in a statistically significant increase in serum ROS products, as well as decreased SOD activity in buffaloes during the breeding season

    Beam-spin asymmetry Ξ£\boldsymbol{\Sigma} for Ξ£βˆ’\Sigma^- hyperon photoproduction off the neutron

    Get PDF
    We report a new measurement of the beam-spin asymmetry Ξ£\boldsymbol{\Sigma} for the Ξ³βƒ—nβ†’K+Ξ£βˆ’\vec{\gamma} n \rightarrow K^+\Sigma^- reaction using quasi-free neutrons in a liquid-deuterium target. The new dataset includes data at previously unmeasured photon energy and angular ranges, thereby providing new constraints on partial wave analyses used to extract properties of the excited nucleon states. The experimental data were obtained using the CEBAF Large Acceptance Spectrometer (CLAS), housed in Hall B of the Thomas Jefferson National Accelerator Facility (JLab). The CLAS detector measured reaction products from a liquid-deuterium target produced by an energy-tagged, linearly polarised photon beam with energies in the range 1.1 to 2.3 GeV. Predictions from an isobar model indicate strong sensitivity to N(1720)3/2+N(1720)3/2^+, Ξ”(1900)1/2βˆ’\Delta(1900)1/2^-, and N(1895)1/2βˆ’N(1895)1/2^-, with the latter being a state not considered in previous photoproduction analyses. When our data are incorporated in the fits of partial-wave analyses, one observes significant changes in Ξ³\gamma-nn couplings of the resonances which have small branching ratios to the Ο€N\pi N channel.Comment: 9 pages, 4 figures, Hadron Spectroscop
    corecore