27,174 research outputs found
Element-specific modal formulations for large-displacement multibody dynamics
Large dispacement assumed-mode modeling techniques are examined in the context of multibody elastodynamics. The range of both general and element-specific approaches are studied with the aid of examples involving beams, plates, and shells. For systems undergoing primarily structural bending and twisting with little or no membrane distortion, it is found that fully-linear, element-specific, modal formulations provide the most accurate time history solutions at the least expense. When membrane effects become dominant in structural problems due to loading and boundary conditions, one must naturally resort to a formulation involving a nonlinear stress-strain relationship in addition to nonlinear terms associated with large overall system motion. Such nonlinear models were investigated using assumed modes and found to lead to modal convergence difficulties when standard free-free structural modes are employed. A constrained mode formulation aimed at addressing the convergence problem is proposed
On the modeling of low-Reynolds-number turbulence
A full Reynolds-stress closure that is capable of describing the flow all the way to the wall was formulated for turbulent flow through circular pipe. Since viscosity does not appear explicitly in the pressure redistribution terms, conventional high-number models for these terms are found to be applicable. However, the models for turbulent diffusion and viscous dissipation have to be modified to account for viscous diffusion near a wall. Two redistribution and two diffusion models are investigated for their effects on the model calculations. Wall correction to pressure redistribution modeling is also examined. Diffusion effects on calculated turbulent properties are further investigated by simplifying the transport equations to algebraic equations for Reynolds stress. Two approximations are explored. These are the equilibrium and nonequilibrium turbulence assumptions. Finally, the two-equation closure is also used to calculate the flow in question and the results compared with all the other model calculations. Fully developed pipe flows at two moderate Reynolds numbers are used to validate these model calculations
Lensing reconstruction of cluster-mass cross-correlation with cosmic microwave background polarization
We extend our maximum likelihood method for reconstructing the cluster-mass
cross-correlation from cosmic microwave background (CMB) temperature
anisotropies and develop new estimators that utilize six different quadratic
combinations of CMB temperature and polarization fields. Our maximum likelihood
estimators are constructed with delensed CMB temperature and polarization
fields by using an assumed model of the convergence field and they can be
iteratively applied to a set of clusters, approaching to the optimal condition
for the lensing reconstruction as the assumed initial model is refined. Using
smoothed particle hydrodynamics simulations, we create a catalog of realistic
clusters obtainable from the current Sunyaev-Zel'dovich (SZ) surveys, and we
demonstrate the ability of the maximum likelihood estimators to reconstruct the
cluster-mass cross-correlation from the massive clusters. The iTT temperature
estimator provides a signal-to-noise ratio of a factor 3 larger than the iEB
polarization estimator, unless the detector noise for measuring polarization
anisotropies is controlled under 3 microK.Comment: 10 pages, 6 figures, accepted for publication in Physical Review
Young\u27s modulus of [111] germanium nanowires
This paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germaniumnanowires (Ge NWs). When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ∼75%. With increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior
Reaper is regulated by IAP-mediated ubiquitination
In most cases, apoptotic cell death culminates in the activation of the caspase family of cysteine proteases, leading to the orderly dismantling and elimination of the cell. The IAPs (inhibitors of apoptosis) comprise a family of proteins that oppose caspases and thus act to raise the apoptotic threshold. Disruption of IAP-mediated caspase inhibition has been shown to be an important activity for pro-apoptotic proteins in Drosophila (Reaper, HID, and Grim) and in mammalian cells (Smac/DIABLO and Omi/HtrA2). In addition, in the case of the fly, these proteins are able to stimulate the ubiquitination and degradation of IAPs by a mechanism involving the ubiquitin ligase activity of the IAP itself. In this report, we show that the Drosophila RHG proteins (Reaper, HID, and Grim) are themselves substrates for IAP-mediated ubiquitination. This ubiquitination of Reaper requires IAP ubiquitin-ligase activity and a stable interaction between Reaper and the IAP. Additionally, degradation of Reaper can be blocked by mutating its potential ubiquitination sites. Most importantly, we also show that regulation of Reaper by ubiquitination is a significant factor in determining its biological activity. These data demonstrate a novel function for IAPs and suggest that IAPs and Reaper-like proteins mutually control each other's abundance
- …