2 research outputs found

    Autophagy regulates spermatid differentiation via degradation of PDLIM1

    No full text
    <p>Spermiogenesis is a complex and highly ordered spermatid differentiation process that requires reorganization of cellular structures. We have previously found that <i>Atg7</i> is required for acrosome biogenesis. Here, we show that autophagy regulates the round and elongating spermatids. Specifically, we found that <i>Atg7</i> is required for spermatozoa flagella biogenesis and cytoplasm removal during spermiogenesis. Spermatozoa motility of <i>atg7</i>-null mice dropped significantly with some extra-cytoplasm retained on the mature sperm head. These defects are associated with an impairment of the cytoskeleton organization. Functional screening revealed that the negative cytoskeleton organization regulator, PDLIM1 (PDZ and LIM domain 1 [elfin]), needs to be degraded by the autophagy-lysosome-dependent pathway to facilitate the proper organization of the cytoskeleton. Our results thus provide a novel mechanism showing that autophagy regulates cytoskeleton organization mainly via degradation of PDLIM1 to facilitate the differentiation of spermatids.</p

    Autophagy is required for ectoplasmic specialization assembly in sertoli cells

    No full text
    <p>The ectoplasmic specialization (ES) is essential for Sertoli-germ cell communication to support all phases of germ cell development and maturity. Its formation and remodeling requires rapid reorganization of the cytoskeleton. However, the molecular mechanism underlying the regulation of ES assembly is still largely unknown. Here, we show that Sertoli cell-specific disruption of autophagy influenced male mouse fertility due to the resulting disorganized seminiferous tubules and spermatozoa with malformed heads. In autophagy-deficient mouse testes, cytoskeleton structures were disordered and ES assembly was disrupted. The disorganization of the cytoskeleton structures might be caused by the accumulation of a negative cytoskeleton organization regulator, PDLIM1, and these defects could be partially rescued by <i>Pdlim1</i> knockdown in autophagy-deficient Sertoli cells. Altogether, our works reveal that the degradation of PDLIM1 by autophagy in Sertoli cells is important for the proper assembly of the ES, and these findings define a novel role for autophagy in Sertoli cell-germ cell communication.</p
    corecore