4,019 research outputs found
The complete mitochondrial genome of the sea spider Achelia bituberculata (Pycnogonida, Ammotheidae): arthropod ground pattern of gene arrangement
<p>Abstract</p> <p>Background</p> <p>The phylogenetic position of pycnogonids is a long-standing and controversial issue in arthropod phylogeny. This controversy has recently been rekindled by differences in the conclusions based on neuroanatomical data concerning the chelifore and the patterns of <it>Hox </it>expression. The mitochondrial genome of a sea spider, <it>Nymphon gracile </it>(Pycnogonida, Nymphonidae), was recently reported in an attempt to address this issue. However, <it>N. gracile </it>appears to be a long-branch taxon on the phylogenetic tree and exhibits a number of peculiar features, such as 10 tRNA translocations and even an inversion of several protein-coding genes. Sequences of other pycnogonid mitochondrial genomes are needed if the position of pycnogonids is to be elucidated on this basis.</p> <p>Results</p> <p>The complete mitochondrial genome (15,474 bp) of a sea spider (<it>Achelia bituberculata</it>) belonging to the family Ammotheidae, which combines a number of anatomical features considered plesiomorphic with respect to other pycnogonids, was sequenced and characterized. The genome organization shows the features typical of most metazoan animal genomes (37 tightly-packed genes). The overall gene arrangement is completely identical to the arthropod ground pattern, with one exception: the position of the <it>trnQ </it>gene between the <it>rrnS </it>gene and the control region. Maximum likelihood and Bayesian inference trees inferred from the amino acid sequences of mitochondrial protein-coding genes consistently indicate that the pycnogonids (<it>A. bituberculata </it>and <it>N. gracile</it>) may be closely related to the clade of Acari and Araneae.</p> <p>Conclusion</p> <p>The complete mitochondrial genome sequence of <it>A. bituberculata </it>(Family Ammotheidae) and the previously-reported partial sequence of <it>Endeis spinosa </it>show the gene arrangement patterns typical of arthropods (<it>Limulus</it>-like), but they differ markedly from that of <it>N. gracile</it>. Phylogenetic analyses based on mitochondrial protein-coding genes showed that Pycnogonida may be authentic arachnids (= aquatic arachnids) within Chelicerata <it>sensu lato</it>, as indicated by the name 'sea spider,' and suggest that the Cormogonida theory – that the pycnogonids are a sister group of all other arthropods – should be rejected. However, in view of the relatively weak node confidence, strand-biased nucleotide composition and long-branch attraction artifact, further more intensive studies seem necessary to resolve the exact position of the pycnogonids.</p
Automatic Internal Stray Light Calibration of AMCW Coaxial Scanning LiDAR Using GMM and PSO
In this paper, an automatic calibration algorithm is proposed to reduce the
depth error caused by internal stray light in amplitude-modulated continuous
wave (AMCW) coaxial scanning light detection and ranging (LiDAR). Assuming that
the internal stray light generated in the process of emitting laser is static,
the amplitude and phase delay of internal stray light are estimated using the
Gaussian mixture model (GMM) and particle swarm optimization (PSO).
Specifically, the pixel positions in a raw signal amplitude map of calibration
checkboard are segmented by GMM with two clusters considering the dark and
bright image pattern. The loss function is then defined as L1-norm of
difference between mean depths of two amplitude-segmented clusters. To avoid
overfitting at a specific distance in PSO process, the calibration check board
is actually measured at multiple distances and the average of corresponding L1
loss functions is chosen as the actual loss. Such loss is minimized by PSO to
find the two optimal target parameters: the amplitude and phase delay of
internal stray light. According to the validation of the proposed algorithm,
the original loss is reduced from tens of centimeters to 3.2 mm when the
measured distances of the calibration checkboard are between 1 m and 4 m. This
accurate calibration performance is also maintained in geometrically complex
measured scene. The proposed internal stray light calibration algorithm in this
paper can be used for any type of AMCW coaxial scanning LiDAR regardless of its
optical characteristics
Highly precise AMCW time-of-flight scanning sensor based on digital-parallel demodulation
In this paper, a novel amplitude-modulated continuous wave (AMCW)
time-of-flight (ToF) scanning sensor based on digital-parallel demodulation is
proposed and demonstrated in the aspect of distance measurement precision.
Since digital-parallel demodulation utilizes a high-amplitude demodulation
signal with zero-offset, the proposed sensor platform can maintain extremely
high demodulation contrast. Meanwhile, as all cross correlated samples are
calculated in parallel and in extremely short integration time, the proposed
sensor platform can utilize a 2D laser scanning structure with a single photo
detector, maintaining a moderate frame rate. This optical structure can
increase the received optical SNR and remove the crosstalk of image pixel
array. Based on these measurement properties, the proposed AMCW ToF scanning
sensor shows highly precise 3D depth measurement performance. In this study,
this precise measurement performance is explained in detail. Additionally, the
actual measurement performance of the proposed sensor platform is
experimentally validated under various conditions
Observation and Numerical Prediction of 2011 East Japan Tsunami Inpacific Ocean
Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv
Korea’s technical assistance for better governance
노트 : - Paper for International Conference on U.S.-Korea Dialogue on Strategies for Effective Development Cooperation
- Organized by Asia Foundation October 17-18, 2011 Seoul, Korea
행사명 : International Conference on U.S.-Korea Dialogue on Strategies for Effective Development Cooperatio
Chrysin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression through the inhibition of nuclear factor for IL-6 (NF-IL6) DNA-binding activity
AbstractChrysin is a natural, biologically active compound extracted from many plants, honey and propolis. It possesses potent anti-inflammation, anti-cancer and anti-oxidation properties. The mechanism by which chrysin suppresses COX-2 expression remains poorly understood. In the present report, we investigated the effect of chrysin on the expression of COX-2 in lipopolysaccharide (LPS)-activated Raw 264.7 cells. Chrysin significantly suppressed the LPS-induced COX-2 protein and mRNA expression in a dose-dependent manner. The ability of chrysin to suppress the expression of the COX-2 was investigated using luciferase reporters controlled by various cis-elements in COX-2 promoter region. Mutational analysis and electrophoretic mobility shift assay verified that nuclear factor for IL-6 was identified as responsible for the chrysin-mediated COX-2 downregulation. These results will provide new insights into the anti-inflammatory and anti-carcinogenic properties of chrysin
Quantitative Sasang Constitution Diagnosis Method for Distinguishing between Tae-eumin and Soeumin Types Based on Elasticity Measurements of the Skin of the Human Hand
The usefulness of constitutional diagnoses based on skin measurements has been established in oriental medicine. However, it is very difficult to standardize traditional diagnosis methods. According to Sasang constitutional medicine, humans can be distinguished based on properties of the skin, including its texture, roughness, hardness and elasticity. The elasticity of the skin was previously used to distinguish between people with Tae-eumin (TE) and Soeumin (SE) constitutions. The present study designed a system that uses a compression method to measure the elasticity of hand skin and evaluated its measurement repeatability. The proposed system was used to compare the skin elasticity between SE and TE subjects, which produced a measurement repeatability error of <3%. The proposed system is suitable for use as a quantitative constitution diagnosis method for distinguishing between TE and SE subjects with an acceptable level of uncertainty
- …