2,428 research outputs found
Automating security monitoring and analysis for Space Station Freedom's electric power system
Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A new approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks
Peripheral nerve-derived VEGF promotes arterial differentiation via neuropilin 1-mediated positive feedback
In developing limb skin, peripheral nerves are required for arterial differentiation, and guide the pattern of arterial branching. In vitro experiments suggest that nerve-derived VEGF may be important for arteriogenesis, but its role in vivo remains unclear. Using a series of nerve-specific Cre lines, we show that VEGF derived from sensory neurons, motoneurons and/or Schwann cells is required for arteriogenesis in vivo. Arteriogenesis also requires endothelial expression of NRP1, an artery-specific coreceptor for VEGF^(164) that is itself induced by VEGF. Our results provide the first evidence that VEGF is necessary for arteriogenesis from a primitive capillary plexus in vivo, and show that in limb skin the nerve is indeed the principal source of this signal. They also suggest a model in which a `winner-takes-all' competition for VEGF may control arterial differentiation, with the outcome biased by a VEGF^(164)-NRP1 positive-feedback loop. Our results also demonstrate that nerve-vessel alignment is a necessary, but not sufficient, condition for nerve-induced arteriogenesis. Different mechanisms therefore probably underlie these endothelial patterning and differentiation processes
Increasing Transit Ridership: Lessons from the Most Successful Transit Systems in the 1990s, MTI Report-01-22
This study systematically examines recent trends in public transit ridership in the U.S. during the 1990s. Specifically, this analysis focuses on agencies that increased ridership during the latter half of the decade. While transit ridership increased steadily by 13 percent nationwide between 1995 and 1999, not all systems experienced ridership growth equally. While some agencies increased ridership dramatically, some did so only minimally, and still others lost riders. What sets these agencies apart from each other? What explains the uneven growth in ridership
Modeling the effects of aluminum and ammonium perchlorate addition on the detonation of the high explosives C_4H_8O_8N_8 (HMX) and C_3H_6O_6N_6(RDX)
Metalized high explosives effectively tailor the explosion impulse at lowered detonation pressures of common high performance explosives such as C_3H_6O_6N_6 (RDX) and C_4H_8O_8N_8 (HMX). The presence of aluminum (Al) with and without ammonium perchlorate (AP) allows the subsequent burning for longer and sustained reactions of enhanced blast explosives. The modeling of reaction rate laws for three explosives with varied amounts of Al, AP, RDX, and HMX is reported. The model validation included the rate stick test for understanding the explosive reaction of the three samples and the large-scale gap test for determining their ignition sensitivity. The experimental results confirmed the accuracy of the model in simulating the shock sensitivity and the size effects before detonation failure. The effect of enhanced blast of these explosives in the presence of Al and AP is also reported
Modeling the shock-induced multiple reactions in a random bed of metallic granules in an energetic material
An investigation of shock–particle interactions in reactive flows is performed using an Eulerian hydrodynamic method with a hybrid particle level-set algorithm to handle the material interface dynamics. The analysis is focused on the meso- to macro-scale numerical modeling of a granular metalized explosive containing randomly distributed metal particles intended to enhance its blast effect. The reactive flow model is used for the cyclotrimethylene-trinitramine (RDX) component, while thermally induced deflagration kinetics describes the aerobic reaction of the metal particles. The complex interfacial algorithm, which uses aligned level sets to track deforming surface between multi materials and to generate the random shape of granule elements, is described for aluminized and copperized RDX. Then, the shock-induced collapse of metal particles embedded in the condensed phase domain of a high explosive is simulated. Both aluminized and copperized RDX are shown to detonate with a shock wave followed by the burning of the metal particles. The energy release and the afterburning behavior behind the detonating shock wave successfully identified the precursor that gave rise to the development of deflagration of the metal particles
O and Ne K absorption edge structures and interstellar abundance towards Cyg X-2
We have studied the O and Ne absorption features in the X-ray spectrum of Cyg
X-2 observed with the Chandra LETG. The O absorption edge is represented by the
sum of three absorption-edge components within the limit of the energy
resolution and the photon counting statistics. Two of them are due to the
atomic O; their energies correspond to two distinct spin states of
photo-ionized O atoms. The remaining edge component is considered to represent
compound forms of oxide dust grains. Since Cyg X-2 is about 1.4 kpc above the
galactic disk, the H column densities can be determined by radio (21 cm and CO
emission line) and H alpha observations with relatively small uncertainties.
Thus the O abundance relative to H can be determined from the absorption edges.
We found that the dust scattering can affect the apparent depth of the edge of
the compound forms. We determined the amplitude of the effect, which we
consider is the largest possible correction factor. The ratio of column
densities of O in atomic to compound forms and the O total abundance were
respectively determined to be in the range 1.7^{+3.0}_{-0.9} to
2.8^{+5.1}_{-1.5} (ratio), and 0.63 +/- 0.12 solar to 0.74 +/- 0.14 solar
(total), taking into account the uncertainties in the dust-scattering
correction and in the ionized H column density. We also determined the Ne
abundance from the absorption edge to be 0.75 +/- 0.20 solar. These abundance
values are smaller than the widely-used solar values but consistent with the
latest estimates of solar abundance.Comment: 20 pages, 3 figures, AASTeX format. Accepted for publication in Ap
Search for X-Ray Emission Associated with the Shapley Supercluster with Suzaku
Suzaku performed observations of 3 regions in and around the Shapley
supercluster: a region located between A3558 and A3556, at ~0.9 times the
virial radii of both clusters, and two other regions at 1{\deg}and 4{\deg}away
from the first pointing. The 4{\deg}-offset observation was used to evaluate
the Galactic foreground emission. We did not detect significant redshifted
Oxygen emission lines (O VII and O VIII) in the spectra of all three pointings,
after subtracting the contribution of foreground and background emission. An
upper limit for the redshifted O VIII Ka line intensity of the warm-hot
intergalactic medium (WHIM) is 1.5 \times 10^-7 photons s^-1 cm^-2 arcmin^-2,
which corresponds to an overdensity of ~380 (Z/0.1 Z_solar)^{-1/2} (L/3
Mpc)^{-1/2}, assuming T=3\times10^6 K. We found excess continuum emission in
the 1{\deg}-offset and on-filament regions, represented by thermal models with
kT ~1 keV and ~2 keV, respectively. The redshifts of both 0 and that of the
supercluster (0.048) are consistent with the observed spectra. The ~1 keV
emission can be also fitted with Ne-rich Galactic (zero redshift) thin thermal
emission. Radial intensity profile of 2 keV component suggests contribution
from A3558 and A3556, but with significant steepening of the intensity slope in
the outer region of A3558. Finally, we summarized the previous Suzaku search
for the WHIM and discussed the feasibility of constraining the WHIM. An
overdensity of < 400 can be detectable using O VII and O VIII emission lines in
a range of 1.4\times10^6 K < T < 5\times10^6 K or a continuum emission in a
relatively high temperature range T > 5\times10^6 K with the Suzaku XIS. The
non detection with Suzaku suggests that typical line-of-sight average
overdensity is < 400
Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cells
Neural crest stem cells (NCSCs) persist in peripheral nerves throughout late gestation but their function is unknown. Current models of nerve development only consider the generation of Schwann cells from neural crest, but the presence of NCSCs raises the possibility of multilineage differentiation. We performed Cre-recombinase fate mapping to determine which nerve cells are neural crest derived. Endoneurial fibroblasts, in addition to myelinating and non-myelinating Schwann cells, were neural crest derived, whereas perineurial cells, pericytes and endothelial cells were not. This identified endoneurial fibroblasts as a novel neural crest derivative, and demonstrated that trunk neural crest does give rise to fibroblasts in vivo, consistent with previous studies of trunk NCSCs in culture. The multilineage differentiation of NCSCs into glial and non-glial derivatives in the developing nerve appears to be regulated by neuregulin, notch ligands, and bone morphogenic proteins, as these factors are expressed in the developing nerve, and cause nerve NCSCs to generate Schwann cells and fibroblasts, but not neurons, in culture. Nerve development is thus more complex than was previously thought, involving NCSC self-renewal, lineage commitment and multilineage differentiation
- …