18 research outputs found

    Effect of mangrove restoration on crab burrow density in Luoyangjiang Estuary, China

    Get PDF
    Background Mangrove restoration seeks to restore or rebuild degraded mangrove systems. The methods of mangrove restoration include ecological projects and restoration-oriented technologies, the latter of which are designed to restore the structure, processes as well as related physical, chemical and biological characteristics of wetlands and to ensure the provision of ecosystem services. As important components of mangrove ecosystem, benthic organisms and crabs play a key role in nutrient cycling. In addition, mangrove restoration, such as vegetation restoration measures, can lead to changes in the benthic faunal communities. This study investigates whether the presence of different mangrove species, age and canopy cover of mangrove communities affect the density of crab burrows. Methods The Luoyangjiang Estuary, in the southeast of Fujian Province, was selected as our research area. A survey, covering 14 sites, was conducted to investigate the impacts of mangrove restoration on the density of crab burrows in four rehabilitated forests with different stand ages and canopy. Results It was found that differences in vegetation types had a large impact on crab density and that the density of crab burrows was lower on exposed beaches (non-mangrove) than under mature Kandelia candel, Aegiceras corniculatum and Avicennia marina communities. In general, the amount of leaf litter and debris on mangrove mudflats was greater than on the beaches as food sources for crabs. Two-factor analysis of variance (ANOVA) shows that changes in mangrove species and age since restoration had different effects on crab burrow density. The effect of canopy cover was highly significant on crab burrow density. Conclusions The results suggest that in the process of mangrove restoration the combined effects of mangrove stand age, canopy cover and other factors should be taken into account. This study further supports the findings of the future scientific research and practice on mangrove restoration and management measures

    Distribution patterns of plant communities and their associations with environmental soil factors on the eastern shore of Lake Taihu, China

    Get PDF
    Introduction: Plant communities and soil factors might interact with each other in different temporal and spatial scales, which can influence the patterns and processes of the wetland ecosystem. To get a better understanding of the distribution of plants in wetlands and analyze their associations with environmental soil factors, the structure and types of plant communities in the eastern shore area of Lake Taihu were analyzed by two-way indicator species analysis and canonical correspondence analysis (CCA) ordination. The spatial distribution patterns of vegetation and the main factors affecting the distributions were investigated.Outcomes: Sixty-six sampling sites were selected to obtain vegetation species and soil environmental factor data. Results showed that 22 species from the 66 sites could be divided into seven communities: I: Arundo donax; II: A. donax + Phragmites australis; III: Zizania latifolia + Typha orientalis; IV: P. australis + Alternanthera philoxeroides + Polygonum hydropiper; V: P. australis; VI: P. australis + Humulus scandens; and VII: Erigeron acer + Ipomoea batatas + Rumex acetosa. Plant species and soil factors in the CCA analysis showed that I. batatas, E. acer, Chenopodium album, Polygonum lapathifolium, and Acalypha australis were mainly affected by pH, whereas Echinochloa crus-galli, Setaria viridis, and H. scandens were mainly affected by soil total phosphorus. Mentha canadensis and A. donax were mainly affected by soil conductivity, A. philoxeroides was mainly affected by soil organic matter and, Z. latifolia, Metaplexis japonica and P. hydropiper were mainly affected by available phosphorus.Conclusion:These results indicated that different plants adapted to different soil environmental factors and provided basic information on the diversity of Lake Taihu wetland vegetation

    Nitrogen Removal in a Horizontal Subsurface Flow Constructed Wetland Estimated Using the First-Order Kinetic Model

    Get PDF
    We monitored the water quality and hydrological conditions of a horizontal subsurface constructed wetland (HSSF-CW) in Beijing, China, for two years. We simulated the area-based constant and the temperature coefficient with the first-order kinetic model. We examined the relationships between the nitrogen (N) removal rate, N load, seasonal variations in the N removal rate, and environmental factors—such as the area-based constant, temperature, and dissolved oxygen (DO). The effluent ammonia (NH4 + -N) and nitrate (NO3 −-N) concentrations were significantly lower than the influent concentrations (p \u3c 0.01, n = 38). The NO3 −-N load was significantly correlated with the removal rate (R 2 = 0.96, p \u3c 0.01), but the NH4 + -N load was not correlated with the removal rate (R 2 = 0.02, p \u3e 0.01). The area-based constants of NO3 −-N and NH4 + -N at 20 ◦C were 27 ± 26 (mean ± SD) and 14 ± 10 m·year−1 , respectively. The temperature coefficients for NO3 −-N and NH4 + -N were estimated at 1.004 and 0.960, respectively. The area-based constants for NO3 −-N and NH4 + -N were not correlated with temperature (p \u3e 0.01). The NO3 −-N area-based constant was correlated with the corresponding load (R 2 = 0.96, p \u3c 0.01). The NH4 + -N area rate was correlated with DO (R 2 = 0.69, p \u3c 0.01), suggesting that the factors that influenced the N removal rate in this wetland met Liebig’s law of the minimum

    Using Government Resettlement Projects as a Sustainable Adaptation Strategy for Climate Change

    No full text
    Given that increasing migration has been addressed as a major consequence of climate change, a growing number of scholars suggest that the planned relocation of people or Government Resettlement Projects (GRPs) should be included in climate change adaptation. This paper reviews the status of climate change and environmentally induced migration in China, and then presents an empirical case study in Shangnan County in northwest China, where a specific GRP called the ‘Massive Southern Shaanxi Migration Program’ (MSSMP) has been initiated in response to climate change-related impacts. The results showed that the MSSMP helped local residents to adapt better climate change by reducing exposures to risk, enabling mobility, providing financial incentives, raising living standards, and improving emotional status. Furthermore, the MSSMP added additional benefits for migrants compared with traditional GRPs by respecting voluntary participation, preparing for future risks, and reducing social isolation via a short relocation distance. However, GRPs could also be seen as a maladaptation to climate change because they disproportionately increase the burden on the most vulnerable community members, such as those who are financially disadvantaged, new migrants, and people who are left behind. The paper further suggests that the GRPs should be designed by involving multiple adaptation strategies as supplements for GRPs, and broadening the political schemes to consider the special needs of vulnerable groups. This study contributes to an understanding of the roles of GRPs in sustainable climate change adaptation, thereby facilitating the design, organization, and implication of future similar programs

    Winter Decomposition of Emergent Macrophytes Affects Water Quality under Ice in a Temperate Shallow Lake

    No full text
    Decomposition of emergent macrophytes is now recognized as an internal nutrient source for shallow lakes. Temperate lakes always experience seasonal ice cover in winter, but the influences of emergent macrophytes decomposition on water quality have rarely been examined under ice. Here, we conducted an incubation experiment to investigate winter decomposition of two common emergent macrophytes species (Typha orientalis and Phragmites australis) and its influences on water quality in the Hengshui Lake, North China. Mesocosms simulating a lake ice regime were incubated in the field for 120 days in winter and were treated with and without plant material addition. Water quality was monitored through dissolved oxygen (DO), dissolved organic carbon (DOC), total nitrogen (TN), total phosphorus (TP), ammonium nitrogen (NH4-N), and nitrate nitrogen (NO3-N). We found that both species were significantly decomposed in winter and that the majority of mass loss occurred in the first 10 days of decomposition when the water surface of mesocosms were already frozen. The concentrations of DO rapidly dropped to values close to zero after plant material submergence. At the end of incubation, the concentrations of DOC, TN, and NO3-N in the mesocosms with plant material addition were significantly higher than initial concentrations. In contrast, the concentrations of DOC, TN, TP, NO3-N, and NH4-N in the mesocosms without plant material addition were equal to or less than initial concentrations. Our research suggests that winter decomposition of emergent macrophytes produces negative influences on water quality under ice that lasts for the whole winter

    Effects of Plant Growth Form and Water Substrates on the Decomposition of Submerged Litter: Evidence of Constructed Wetland Plants in a Greenhouse Experiment

    No full text
    Wetland plants are important components in constructed wetlands (CWs), and one of their most important functions in CWs is to purify the water. However, wetland plant litter can also increase eutrophication of water via decomposition and nutrient release, and few studies have focused on the interspecific variation in the decomposition rate and nutrient release of multiple plant species in CWs. Here a greenhouse litter-bag experiment was conducted to quantify the decomposition rates and nutrient release of 7 dominant macrophytes (2 floating plants and 5 emergent plants) in three types of water substrate. The results showed that plant litter species and growth forms significantly affected the litter mass losses. The nutrient release was significantly different among plant litter species, but not between floating and emergent plants. Litter traits, such as litter lignin, total nitrogen (TN) and total phosphorus (TP) can well predict the decomposition rates of submerged litter. These results indicated that submerging litter in water did not change the relationships between litter traits and litter decomposition rates, and leaching might play a more important role in the decomposition of submerged litter in CWs than that in other terrestrial ecosystems. These findings can provide suggestions for managers about the maintenance of constructed wetlands

    Spartina alterniflora Leaf and Soil Eco-Stoichiometry in the Yancheng Coastal Wetland

    No full text
    Carbon, nitrogen, and phosphorus—nutrient and restrictive elements for plant growth and important components of the plant body—are mainly transferred and exchanged between plants and the soil environment. Changes in the carbon, nitrogen, and phosphorus eco-stoichiometry greatly impact the growth and expansion of Spartina alterniflora, and understanding these changes can reveal the nutrient coordination mechanism among ecosystem components. To explore the relationship between leaf and soil eco-stoichiometry and determine the key soil factors that affect leaf eco-stoichiometry, we collected leaf and soil samples of S. alterniflora at different tidal levels (i.e., 1, 3, and 5 km away from the coastline) in a coastal wetland in the Yancheng Elk Nature Reserve, Jiangsu province. We measured the leaf and soil carbon, nitrogen, and phosphorus contents and ratios, as well as the soil salinity and soil organic carbon. The results revealed the following. (1) The leaf stoichiometric characteristics and soil properties of S. alterniflora differed significantly between tidal levels; for example, total carbon, nitrogen, soil organic carbon were detected at their highest levels at 3 km and lowest levels at 5 km. (2) Significant correlations were detected between the leaf stoichiometric characteristics and soil characteristics. Additionally, nitrogen limitation was evident in the study area, as indicated by the nitrogen–phosphorus ratio being less than 14 and the soil nitrogen–phosphorus ratio being less than 1. (3) Soil salinity and the soil carbon–nitrogen ratio were shown to be the key factors that affect the eco-stoichiometric characteristics of S. alterniflora. These findings furthered our understanding of the nutrient distribution mechanisms and invasion strategy of S. alterniflora and can thus be used to guide S. alterniflora control policies formulated by government management departments in China

    Soil fauna diversity at different stages of reed restoration in a lakeshore wetland at Lake Taihu, China

    No full text
    Introduction: Wetland soil fauna support material cycling and restoration processes in wetland ecosystems. In our study, we observed variations in wetland soil fauna on the shores of Lake Taihu, China. We examined the relationships between fauna and major environmental factors, and looked at the short-and long-term changes in reed wetlands under restoration and in the natural reed lakeshore. Outcomes: We identified 93 groups of soil fauna in different wetlands and found significant differences in the lakeshore wetlands’ soil fauna assemblages, depending on the length of the restoration period. By analyzing the soil fauna community evenness, dominance, number of taxa, and diversity, we found minimal seasonal variation in the soil fauna community diversity and abundance. The abundance of soil fauna in the sites under restoration decreased with depth below the soil surface. The reed restoration was obvious in the succession of the soil fauna groups in the long-term site. Although the restoration had an overall positive long-term effect on the soil fauna communities, there were no obvious short-term changes in the number of individuals. Conclusion: The study explored various potential measures to restore soil fauna in the Lake Taihu wetland and developed a theoretical basis for restoring the lakeshore wetland ecosystem

    Nitrogen Removal in a Horizontal Subsurface Flow Constructed Wetland Estimated Using the First-Order Kinetic Model

    No full text
    We monitored the water quality and hydrological conditions of a horizontal subsurface constructed wetland (HSSF-CW) in Beijing, China, for two years. We simulated the area-based constant and the temperature coefficient with the first-order kinetic model. We examined the relationships between the nitrogen (N) removal rate, N load, seasonal variations in the N removal rate, and environmental factors—such as the area-based constant, temperature, and dissolved oxygen (DO). The effluent ammonia (NH4+-N) and nitrate (NO3−-N) concentrations were significantly lower than the influent concentrations (p < 0.01, n = 38). The NO3−-N load was significantly correlated with the removal rate (R2 = 0.96, p < 0.01), but the NH4+-N load was not correlated with the removal rate (R2 = 0.02, p > 0.01). The area-based constants of NO3−-N and NH4+-N at 20 °C were 27 ± 26 (mean ± SD) and 14 ± 10 m∙year−1, respectively. The temperature coefficients for NO3−-N and NH4+-N were estimated at 1.004 and 0.960, respectively. The area-based constants for NO3−-N and NH4+-N were not correlated with temperature (p > 0.01). The NO3−-N area-based constant was correlated with the corresponding load (R2 = 0.96, p < 0.01). The NH4+-N area rate was correlated with DO (R2 = 0.69, p < 0.01), suggesting that the factors that influenced the N removal rate in this wetland met Liebig’s law of the minimum
    corecore