1,560 research outputs found

    Traumatic Brain Injury Induces Genome-Wide Transcriptomic, Methylomic, and Network Perturbations in Brain and Blood Predicting Neurological Disorders.

    Get PDF
    The complexity of the traumatic brain injury (TBI) pathology, particularly concussive injury, is a serious obstacle for diagnosis, treatment, and long-term prognosis. Here we utilize modern systems biology in a rodent model of concussive injury to gain a thorough view of the impact of TBI on fundamental aspects of gene regulation, which have the potential to drive or alter the course of the TBI pathology. TBI perturbed epigenomic programming, transcriptional activities (expression level and alternative splicing), and the organization of genes in networks centered around genes such as Anax2, Ogn, and Fmod. Transcriptomic signatures in the hippocampus are involved in neuronal signaling, metabolism, inflammation, and blood function, and they overlap with those in leukocytes from peripheral blood. The homology between genomic signatures from blood and brain elicited by TBI provides proof of concept information for development of biomarkers of TBI based on composite genomic patterns. By intersecting with human genome-wide association studies, many TBI signature genes and network regulators identified in our rodent model were causally associated with brain disorders with relevant link to TBI. The overall results show that concussive brain injury reprograms genes which could lead to predisposition to neurological and psychiatric disorders, and that genomic information from peripheral leukocytes has the potential to predict TBI pathogenesis in the brain

    Astrocyte elevated gene 1: biological functions and molecular mechanism in cancer and beyond

    Get PDF
    Since its discovery, nearly one decade of research on astrocyte elevated gene 1 (AEG-1) has witnessed expanding knowledge of this molecule, ranging from its role in cancer biology to molecular mechanisms underlying the biological functions. As a multifunctional oncoprotein, AEG-1 has been shown to overexpress in multiple types of human cancer, and the elevation of AEG-1 in tumor cells leads to enhanced phenotypes characteristic of malignant aggressiveness, including increased abilities to proliferate robustly, to invade surrounding tissues, to migrate, to induce neovascularization, and to enhance chemoresistance. The multifunctional role of AEG-1 in tumor development and progression has been found to be associated with several signaling cascades, namely, 1) activation of NF-kappa B, partially through direct interaction with p65; 2) PI3K/AKT signaling triggered by AEG-1 indirectly; 3) enhancement of the transcriptional activity of beta-catenin by indirect activation of MAPK and induction of LEF1; 4) regulation of mi/siRNA-mediated gene silencing by interacting with SND1; and 5) promotion of protective autophagy; in addition to possibly unknown mechanisms. Elevated AEG-1 expression is seen in nearly all tumor types, and in most cases AEG-1 positively correlates with tumor progression and poorer patient survival. Taken together, AEG-1 might represent a potential prognostic biomarker and therapeutic target

    The Effect of Consumer Behaviour on the Life Cycle Assessment of Energy Efficient Lighting Technologies

    Get PDF
    AbstractEnergy efficient lamps offer significant energy savings throughout their life. However, there is a variety of energy saving lamps available and it is unclear which impacts the environment least throughout the lifecycle under different use patterns. Different use patterns have a significant impact on the lifetime of each light globe alternative and therefore affect the life cycle impact of each globe.This paper undertakes a series of Life Cycle Assessments on two alternative lighting choices (Light Emitting Diodes and Compact Florescent Lamps) under a range of use conditions. It was found that the environmental impacts were comparable for CFLs and LEDs, though significantly less than traditional incandescent, for a range of different use cases. The sensitivity analysis carried out shows that the variation in lamp parameters has a far greater effect on the lifecycle impact rather than the use patterns

    A New Method for Analyzing Integrated Stealth Ability of Penetration Aircraft

    Get PDF
    AbstractTaking into account the limitations of existing stealth performance analysis methods, a method termed as the integrated stealth performance analysis method is proposed for evaluating the stealth ability of the penetration aircraft. Based on various target radar cross section (RCS) scattering characters, this article integrates the relevant parameters needed for building up target circumferential RCS scattering model and proposes the RCS scattering controlling parameters to control the changing trends of the relevant model RCS scattering characters. According to the radar dynamic detecting characters during the whole penetration course, a dynamic stealth performance evaluating model is proposed accompanied by a series of stealth ability estimation rules. This new analysis method can enhance the integrality and dependability of the stealth analysis conclusions and summarize the relationship between the target RCS scattering characters and their effects on stealth performance. The rules indicated by this relationship can be used as the reference for designing new type of stealth aircraft and setting up specific penetration tactics
    corecore