10 research outputs found

    Nomogram based on computed tomography images and clinical data for distinguishing between primary intestinal lymphoma and Crohn’s disease: a retrospective multicenter study

    Get PDF
    BackgroundDifferential diagnosis of primary intestinal lymphoma (PIL) and Crohn’s disease (CD) is a challenge in clinical diagnosis.AimsTo investigate the validity of the nomogram based on clinical and computed tomography (CT) features to identify PIL and CD.MethodsThis study retrospectively analyzed laboratory parameters, demographic characteristics, clinical manifestations, and CT imaging features of PIL and CD patients from two centers. Univariate logistic analysis was performed for each variable, and laboratory parameter model, clinical model and imaging features model were developed separately. Finally, a nomogram was established. All models were evaluated using the area under the curve (AUC), accuracy, sensitivity, specificity, and decision curve analysis (DCA).ResultsThis study collected data from 121 patients (PIL = 69, CD = 52) from Center 1. Data from 43 patients (PIL = 24, CD = 19) were collected at Center 2 as an external validation cohort to validate the robustness of the model. Three models and a nomogram were developed to distinguish PIL from CD. Most models performed well from the external validation cohort. The nomogram showed the best performance with an AUC of 0.921 (95% CI: 0.838–1.000) and sensitivities, specificities, and accuracies of 0.945, 0.792, and 0.860, respectively.ConclusionA nomogram combining clinical data and imaging features was constructed, which can effectively distinguish PIL from CD

    Analysis of the genetic architecture of maize kernel size traits by combined linkage and association mapping

    Get PDF
    Kernel size‐related traits are the most direct traits correlating with grain yield. The genetic basis of three kernel traits of maize, kernel length (KL), kernel width (KW) and kernel thickness (KT), was investigated in an association panel and a biparental population. A total of 21 single nucleotide polymorphisms (SNPs) were detected to be most significantly (P \u3c 2.25 × 10−6) associated with these three traits in the association panel under four environments. Furthermore, 50 quantitative trait loci (QTL) controlling these traits were detected in seven environments in the intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population, of which eight were repetitively identified in at least three environments. Combining the two mapping populations revealed that 56 SNPs (P \u3c 1 × 10−3) fell within 18 of the QTL confidence intervals. According to the top significant SNPs, stable‐effect SNPs and the co‐localized SNPs by association analysis and linkage mapping, a total of 73 candidate genes were identified, regulating seed development. Additionally, seven miRNAs were found to situate within the linkage disequilibrium (LD) regions of the co‐localized SNPs, of which zma‐miR164e was demonstrated to cleave the mRNAs of Arabidopsis CUC1, CUC2 and NAC6 in vitro. Overexpression of zma‐miR164e resulted in the down‐regulation of these genes above and the failure of seed formation in Arabidopsis pods, with the increased branch number. These findings provide insights into the mechanism of seed development and the improvement of molecular marker‐assisted selection (MAS) for high‐yield breeding in maize

    Adaptive Finite-Time Backstepping Integral Sliding Mode Control of Three-Degree-of-Freedom Stabilized System for Ship Propulsion-Assisted Sail Based on the Inverse System Method

    No full text
    The three-degree-of-freedom (3-DOF) stabilized control system for ship propulsion-assisted sails is used to control the 3-DOF motion of sails to obtain offshore wind energy. The attitude of the sail is adjusted to ensure optimal thrust along the target course. An adaptive finite-time backstepping integral sliding mode control based on the inverse system method (ABISMC-ISM) is presented for attitude tracking of the sail. Considering the nonlinear dynamics and strong coupling of the system, a decoupling strategy is established using the inverse system method (ISM). Constructing inverse dynamics to eliminate internal coupling, the system is transformed into independent pseudolinear subsystems. For the decoupled open-loop subsystems, an adaptive finite-time backstepping integral sliding mode control is designed to achieve closed-loop control. A backstepping-based integral sliding surface is proposed to eliminate the phase-reaching stage of the sliding surface. Considering the unmodelled dynamics and external disturbances, an adaptive extreme learning machine (AELM) was designed to estimate the disturbances. Furthermore, a sliding mode reaching law based on finite-time theory was employed to ensure that the system returns to the sliding surface in a finite time under chattering conditions. Experiments on a principle prototype demonstrate the effectiveness and energy-saving performance of the proposed method

    Micropore Throat Structure and Movable Fluid Characteristics of Chang 63 Tight Sandstone in Baibao Area of Ordos Basin

    No full text
    Tight sand is an important unconventional reservoir. Aiming at the problem of large unused reserves and the poor development effect of Chang 63 reservoir, this paper researches reunderstanding reservoir and evaluating unused reserves. Employing rock slice and scanning electron microscope (SEM), the experiment of low-field nuclear magnetic resonance (NMR), water-oil relative permeability experiment, reservoir space, movable fluid, and oil-water seepage characteristics was studied. The factors affecting NMR T2 cutoff, controlling factors of movable fluids, and controlling factors of displacing efficiency in tight sandstone reservoirs are discussed. The study demonstrates that (1) the mean pore volume and permeability are 4.4% and 0.068 mD, respectively. The reservoir pertains to tight sandstone, mainly intergranular pore and dissolution pore, and the intercalated materials are mainly chlorite and illite. (2) The characteristic of the NMR T2 spectrum has bimodal characteristics and can be subdivided into two classes: left peak dominant and right peak dominant. The mean value of mobile fluid saturation was 17.9%. (3) According to the relative permeability curve pattern, it is divided into four categories, and the mean bound water saturation is 29.9%. The average irreducible oil saturation was 40.6%. The mean oil flooding efficiency was 40.2%. (4) The better the pore-throat relationship, the lower the T2 cutoff, the stronger ability of the fluid migration ability, and the higher of a percentage of active fluid. The percentage of active fluid in a low-permeability reservoir is affected by the reservoir’s physical property and pore structure

    Table_1_Nomogram based on computed tomography images and clinical data for distinguishing between primary intestinal lymphoma and Crohn’s disease: a retrospective multicenter study.DOCX

    No full text
    BackgroundDifferential diagnosis of primary intestinal lymphoma (PIL) and Crohn’s disease (CD) is a challenge in clinical diagnosis.AimsTo investigate the validity of the nomogram based on clinical and computed tomography (CT) features to identify PIL and CD.MethodsThis study retrospectively analyzed laboratory parameters, demographic characteristics, clinical manifestations, and CT imaging features of PIL and CD patients from two centers. Univariate logistic analysis was performed for each variable, and laboratory parameter model, clinical model and imaging features model were developed separately. Finally, a nomogram was established. All models were evaluated using the area under the curve (AUC), accuracy, sensitivity, specificity, and decision curve analysis (DCA).ResultsThis study collected data from 121 patients (PIL = 69, CD = 52) from Center 1. Data from 43 patients (PIL = 24, CD = 19) were collected at Center 2 as an external validation cohort to validate the robustness of the model. Three models and a nomogram were developed to distinguish PIL from CD. Most models performed well from the external validation cohort. The nomogram showed the best performance with an AUC of 0.921 (95% CI: 0.838–1.000) and sensitivities, specificities, and accuracies of 0.945, 0.792, and 0.860, respectively.ConclusionA nomogram combining clinical data and imaging features was constructed, which can effectively distinguish PIL from CD.</p

    Two Practical Methods to Retrieve Aerosol Optical Properties from Coherent Doppler Lidar

    No full text
    Complexly distributed aerosol particles have significant impacts on climate and environmental changes. As one of the vital atmospheric power sources, the wind field deeply affects the distribution and transport of aerosol particles. For a more comprehensive investigation of the aerosols flux and transport mechanism, two retrieval methods of aerosol optical properties (backscatter coefficient and extinction coefficient at 1550 nm) from coherent Doppler lidar (CDL) observation are proposed in this paper. The first method utilizes the calculated aerosol backscatter coefficient (532 nm) from Mie-scattering lidar datasets and the iterative Fernald method to retrieve aerosol optical property profiles during joint measurements with CDL and Mie-scattering lidar. After verifying the correctness of the first method compared with AERONET datasets, we proposed the second retrieval method. Using the forward integral Fernald method with near-ground reference aerosol extinction coefficient calculated by atmospheric visibility, aerosol optical properties at 1550 nm could be obtained. Thirty-six-day joint measurements with two lidars were specially designed and conducted to verify the correctness of these retrieval methods. The validation results of these two methods indicate great performances, where the mean relative errors are 0.0272 and 0.1656, and the correlation coefficients are 0.9306 and 0.9197, respectively. In conclusion, the feasibility of these two retrieval methods extends the capability of CDL to detect aerosol optical properties and also provides a possibility to observe the aerosol distribution and transport process comprehensively, which is a great promotion of aerosol transport studies development

    >

    No full text

    Analysis of the genetic architecture of maize kernel size traits by combined linkage and association mapping

    Get PDF
    Kernel size‐related traits are the most direct traits correlating with grain yield. The genetic basis of three kernel traits of maize, kernel length (KL), kernel width (KW) and kernel thickness (KT), was investigated in an association panel and a biparental population. A total of 21 single nucleotide polymorphisms (SNPs) were detected to be most significantly (P P Arabidopsis CUC1, CUC2 and NAC6 in vitro. Overexpression of zma‐miR164e resulted in the down‐regulation of these genes above and the failure of seed formation in Arabidopsis pods, with the increased branch number. These findings provide insights into the mechanism of seed development and the improvement of molecular marker‐assisted selection (MAS) for high‐yield breeding in maize.This article is published as Liu, Min, Xiaolong Tan, Yan Yang, Peng Liu, Xiaoxiang Zhang, Yinchao Zhang, Lei Wang et al. "Analysis of the genetic architecture of maize kernel size traits by combined linkage and association mapping." Plant biotechnology journal (2019). doi: 10.1111/pbi.13188.</p

    Whole-genome sequencing of cultivated and wild peppers provides insights into <i>Capsicum</i> domestication and specialization

    No full text
    As an economic crop, pepper satisfies people’s spicy taste and has medicinal uses worldwide. To gain a better understanding of Capsicum evolution, domestication, and specialization, we present here the genome sequence of the cultivated pepper Zunla-1 (C. annuum L.) and its wild progenitor Chiltepin (C. annuum var. glabriusculum). We estimate that the pepper genome expanded ∼0.3 Mya (with respect to the genome of other Solanaceae) by a rapid amplification of retrotransposons elements, resulting in a genome comprised of ∼81% repetitive sequences. Approximately 79% of 3.48-Gb scaffolds containing 34,476 protein-coding genes were anchored to chromosomes by a high-density genetic map. Comparison of cultivated and wild pepper genomes with 20 resequencing accessions revealed molecular footprints of artificial selection, providing us with a list of candidate domestication genes. We also found that dosage compensation effect of tandem duplication genes probably contributed to the pungent diversification in pepper. The Capsicum reference genome provides crucial information for the study of not only the evolution of the pepper genome but also, the Solanaceae family, and it will facilitate the establishment of more effective pepper breeding programs
    corecore