5,090 research outputs found

    On the Convergence of Decentralized Gradient Descent

    Full text link
    Consider the consensus problem of minimizing f(x)=βˆ‘i=1nfi(x)f(x)=\sum_{i=1}^n f_i(x) where each fif_i is only known to one individual agent ii out of a connected network of nn agents. All the agents shall collaboratively solve this problem and obtain the solution subject to data exchanges restricted to between neighboring agents. Such algorithms avoid the need of a fusion center, offer better network load balance, and improve data privacy. We study the decentralized gradient descent method in which each agent ii updates its variable x(i)x_{(i)}, which is a local approximate to the unknown variable xx, by combining the average of its neighbors' with the negative gradient step βˆ’Ξ±βˆ‡fi(x(i))-\alpha \nabla f_i(x_{(i)}). The iteration is x(i)(k+1)β†βˆ‘neighborjofiwijx(j)(k)βˆ’Ξ±βˆ‡fi(x(i)(k)),forΒ eachΒ agenti,x_{(i)}(k+1) \gets \sum_{\text{neighbor} j \text{of} i} w_{ij} x_{(j)}(k) - \alpha \nabla f_i(x_{(i)}(k)),\quad\text{for each agent} i, where the averaging coefficients form a symmetric doubly stochastic matrix W=[wij]∈RnΓ—nW=[w_{ij}] \in \mathbb{R}^{n \times n}. We analyze the convergence of this iteration and derive its converge rate, assuming that each fif_i is proper closed convex and lower bounded, βˆ‡fi\nabla f_i is Lipschitz continuous with constant LfiL_{f_i}, and stepsize Ξ±\alpha is fixed. Provided that Ξ±<O(1/Lh)\alpha < O(1/L_h) where Lh=max⁑i{Lfi}L_h=\max_i\{L_{f_i}\}, the objective error at the averaged solution, f(1nβˆ‘ix(i)(k))βˆ’fβˆ—f(\frac{1}{n}\sum_i x_{(i)}(k))-f^*, reduces at a speed of O(1/k)O(1/k) until it reaches O(Ξ±)O(\alpha). If fif_i are further (restricted) strongly convex, then both 1nβˆ‘ix(i)(k)\frac{1}{n}\sum_i x_{(i)}(k) and each x(i)(k)x_{(i)}(k) converge to the global minimizer xβˆ—x^* at a linear rate until reaching an O(Ξ±)O(\alpha)-neighborhood of xβˆ—x^*. We also develop an iteration for decentralized basis pursuit and establish its linear convergence to an O(Ξ±)O(\alpha)-neighborhood of the true unknown sparse signal

    Confronting brane inflation with Planck and pre-Planck data

    Full text link
    In this paper, we compare brane inflation models with the Planck data and the pre-Planck data (which combines WMAP, ACT, SPT, BAO and H0 data). The Planck data prefer a spectral index less than unity at more than 5\sigma confidence level, and a running of the spectral index at around 2\sigma confidence level. We find that the KKLMMT model can survive at the level of 2\sigma only if the parameter Ξ²\beta (the conformal coupling between the Hubble parameter and the inflaton) is less than O(10βˆ’3)\mathcal{O}(10^{-3}), which indicates a certain level of fine-tuning. The IR DBI model can provide a slightly larger negative running of spectral index and red tilt, but in order to be consistent with the non-Gaussianity constraints from Planck, its parameter also needs fine-tuning at some level.Comment: 10 pages, 8 figure
    • …
    corecore