50,404 research outputs found

    The principle of least action and the geometric basis of D-branes

    Full text link
    We analyze thoroughly the boundary conditions allowed in classical non-linear sigma models and derive from first principle the corresponding geometric objects, i.e. D-branes. In addition to giving classical D-branes an intrinsic and geometric foundation, D-branes in nontrivial H flux and D-branes embedded within D-branes are precisely defined. A well known topological condition on D-branes is replaced

    A cluster expansion approach to renormalization group transformations

    Full text link
    The renormalization group (RG) approach is largely responsible for the considerable success which has been achieved in developing a quantitative theory of phase transitions. This work treats the rigorous definition of the RG map for classical Ising-type lattice systems in the infinite volume limit at high temperature. A cluster expansion is used to justify the existence of the partial derivatives of the renormalized interaction with respect to the original interaction. This expansion is derived from the formal expressions, but it is itself well-defined and convergent. Suppose in addition that the original interaction is finite-range and translation-invariant. We will show that the matrix of partial derivatives in this case displays an approximate band property. This in turn gives an upper bound for the RG linearization.Comment: 13 page

    Age-Optimal Information Updates in Multihop Networks

    Full text link
    The problem of reducing the age-of-information has been extensively studied in the single-hop networks. In this paper, we minimize the age-of-information in general multihop networks. If the packet transmission times over the network links are exponentially distributed, we prove that a preemptive Last Generated First Served (LGFS) policy results in smaller age processes at all nodes of the network (in a stochastic ordering sense) than any other causal policy. In addition, for arbitrary general distributions of packet transmission times, the non-preemptive LGFS policy is shown to minimize the age processes at all nodes of the network among all non-preemptive work-conserving policies (again in a stochastic ordering sense). It is surprising that such simple policies can achieve optimality of the joint distribution of the age processes at all nodes even under arbitrary network topologies, as well as arbitrary packet generation and arrival times. These optimality results not only hold for the age processes, but also for any non-decreasing functional of the age processes.Comment: arXiv admin note: text overlap with arXiv:1603.0618

    Dual-topology insertion of a dual-topology membrane protein.

    Get PDF
    Some membrane transporters are dual-topology dimers in which the subunits have inverted transmembrane topology. How a cell manages to generate equal populations of two opposite topologies from the same polypeptide chain remains unclear. For the dual-topology transporter EmrE, the evidence to date remains consistent with two extreme models. A post-translational model posits that topology remains malleable after synthesis and becomes fixed once the dimer forms. A second, co-translational model, posits that the protein inserts in both topologies in equal proportions. Here we show that while there is at least some limited topological malleability, the co-translational model likely dominates under normal circumstances
    • …
    corecore