133 research outputs found

    Flow in out-of-plane double S-bonds

    Get PDF
    Developing flows in two out-of-plane double S-bend configurations have been measured by laser-Doppler anemometry. The first duct had a rectangular cross-section 40mmx40mm at the inlet and consisted of a uniform area 22.5 deg. - 22.5 deg. S-duct upstream with a 22.5 deg.- 22.5 deg. S- diffuser downstream. The second duct had a circular cross-section and consisted of a 45 deg. - 45 deg. uniform area S-duct upstream with a 22.5 deg. -22.5 deg. S-diffuser downstream. In both configurations the ratio of the mean radius of curvature to the inlet hydraulic diameter was 7.0, the exit-to-inlet area ratio of the diffusers was 1.5 and the ducts were connected so that the centerline of the S-duct lay in a plane normal to that of the S-diffuser. Streamwise and cross-stream velocity components were measured in laminar flow for the rectangular duct and in turbulent flow for both configurations; measurements of the turbulence levels, cross-correlations and wall static pressures were also made in the turbulent flow cases. Secondary flows of the first kind are present in the first S-duct and they are complemented or counteracted by the secondary flows generated by the area expansion and by the curvature of the S-diffusers downstream. Cross-stream velocities with magnitudes up to 0.19 and 0.11 of the bulk velocity were measured in the laminar and turbulent flows respectively in the rectangular duct and six cross-flow vortices were evident at the exit of the duct in both flow cases. The turbulent flow in the circular duct was qualitatively similar to that in the rectangular configuration, but the cross-stream velocities measured at the exit plane were smaller in the circular geometry. The results are presented in sufficient detail and accuracy for the assessment of numerical calculation methods and are listed in tabular form for this purpose

    Developing flow in S-shaped ducts. 1: Square cross-section duct

    Get PDF
    Laser-Doppler velocimetry was used to measure the laminar and turbulent flow in an S-duct formed with two 22.5 deg sectors of a bend with ratio of mean radius of curvature to hydraulic diameter of 7.0. The boundary layers at the inlet to the bend were about 25% and 15% of the hydraulic diameter for the laminar and turbulent flows, respectively. Pressure-driven secondary flows develop in the first half of the S-duct and persist into the second half but are largely reversed by the exit plane as a consequence of the change in the sense of curvature. There is, however, a region near the outer wall of the second bend where the redistribution of the streamwise isotachs results in a reinforcement of the secondary flow which was established in the first half of the S-duct. The net redistribution of the streamwise isotachs is comparable to that occurring in unidirectional bends of stronger curvature. The wall pressure distribution was also measured for the turbulent flow and quantifies the expected large variations in the longitudinal pressure gradient distributions which occur at different radial locations

    Laser Doppler measurements of laminar and turbulent flow in a pipe bend

    Get PDF
    The streamwise components of velocity in the flow through a ninety degree bend of circular cross section for which the ratio of radius of curvature to diameter is 2.8 were measured. The development of strong pressure driven secondary flow in the form of a pair of counter rotating vortices in the steamwise direction is shown. Refractive index matching at the fluid wall interface was not employed; the displacement of the measurement volume due to refraction is allowed for in simple geometrical calculations

    On the measurement and scaling of mixing time in orbitally shaken bioreactors

    Get PDF
    Accurate determination of the mixing time in orbitally shaken bioreactors (OSRs) is essential for the optimization of mixing processes and minimization of concentration gradients that can be deleterious to cell cultures. The Dual Indicator System for Mixing Time (DISMT) was employed to measure mixing times in cylindrical and Erlenmeyer flask bioreactors. Various aspects of importance for the acquisition of accurate data from the measurement methodology are discussed, utilizing also comparisons of DISMT and pH probe results obtained in two stirred reactors. The OSR results are juxtaposed with data previously reported in the literature for both cylindrical reactors and Erlenmeyer flasks. The employment of a critical Froude number shows promise for the establishment of a scaling law for mixing time across the various types and sizes of shaken bioreactors

    Flow in reciprocating engine cylinders and curved ducts

    Get PDF
    Imperial Users onl

    Mixing, blending and vortices, large and small

    No full text
    • …
    corecore