10 research outputs found

    Standard Model Higgs Searches at the LHC

    Get PDF
    An overview of the searches for the Standard Model Higgs boson at the LHC is presented. The main Higgs production and decay modes that have been studied are introduced, and the analysis techniques and the recent developments done by the ATLAS and CMS experiments are described. Some preliminary results from current studies are included. The discovery potential within the first few years of physics running is evaluated

    Novel Biocompatible Thermoresponsive Poly(<i>N</i>‑vinyl Caprolactam)/Clay Nanocomposite Hydrogels with Macroporous Structure and Improved Mechanical Characteristics

    No full text
    Poly­(<i>N</i>-vinyl caprolactam) (PVCL) hydrogels usually suffer from the imporous structure and poor mechanical characteristics as well as the toxicity of cross-linkers, although PVCL itself is biocompatible. In this paper, novel biocompatible thermoresponsive poly­(<i>N</i>-vinyl caprolactam)/clay nanocomposite (PVCL-Clay) hydrogels with macroporous structure and improved mechanical characteristics are developed for the first time. The macroporosity in the hydrogel is introduced by using Pickering emulsions as templates, which contain <i>N</i>-vinyl caprolactam (VCL) monomer as dispersed phase and clay sheets as stabilizers at the interface. After polymerization, macropores are formed inside the hydrogels with the residual unreacted VCL droplets as templates. The three-dimensional PVCL polymer networks are cross-linked by the clay nanosheets. Due to the nanocomposite structure, the hydrogel exhibits better mechanical characteristics in comparison to the conventional PVCL hydrogels cross-linked by <i>N</i>,<i>N</i>′-methylene diacrylamide (BIS). The prepared PVCL-Clay hydrogel possesses remarkable temperature-responsive characteristics with a volume phase transition temperature (VPTT) around 35 °C, and provides a feasible platform for cell culture. With macroporous structure and good mechanical characteristics as well as flexible assembly performance, the proposed biocompatible thermoresponsive PVCL-Clay nanocomposite hydrogels are ideal material candidates for biomedical, analytical, and other applications such as entrapment of enzymes, cell culture, tissue engineering, and affinity and displacement chromatography

    Novel Biocompatible Thermoresponsive Poly(<i>N</i>‑vinyl Caprolactam)/Clay Nanocomposite Hydrogels with Macroporous Structure and Improved Mechanical Characteristics

    No full text
    Poly­(<i>N</i>-vinyl caprolactam) (PVCL) hydrogels usually suffer from the imporous structure and poor mechanical characteristics as well as the toxicity of cross-linkers, although PVCL itself is biocompatible. In this paper, novel biocompatible thermoresponsive poly­(<i>N</i>-vinyl caprolactam)/clay nanocomposite (PVCL-Clay) hydrogels with macroporous structure and improved mechanical characteristics are developed for the first time. The macroporosity in the hydrogel is introduced by using Pickering emulsions as templates, which contain <i>N</i>-vinyl caprolactam (VCL) monomer as dispersed phase and clay sheets as stabilizers at the interface. After polymerization, macropores are formed inside the hydrogels with the residual unreacted VCL droplets as templates. The three-dimensional PVCL polymer networks are cross-linked by the clay nanosheets. Due to the nanocomposite structure, the hydrogel exhibits better mechanical characteristics in comparison to the conventional PVCL hydrogels cross-linked by <i>N</i>,<i>N</i>′-methylene diacrylamide (BIS). The prepared PVCL-Clay hydrogel possesses remarkable temperature-responsive characteristics with a volume phase transition temperature (VPTT) around 35 °C, and provides a feasible platform for cell culture. With macroporous structure and good mechanical characteristics as well as flexible assembly performance, the proposed biocompatible thermoresponsive PVCL-Clay nanocomposite hydrogels are ideal material candidates for biomedical, analytical, and other applications such as entrapment of enzymes, cell culture, tissue engineering, and affinity and displacement chromatography

    Novel Biocompatible Thermoresponsive Poly(<i>N</i>‑vinyl Caprolactam)/Clay Nanocomposite Hydrogels with Macroporous Structure and Improved Mechanical Characteristics

    No full text
    Poly­(<i>N</i>-vinyl caprolactam) (PVCL) hydrogels usually suffer from the imporous structure and poor mechanical characteristics as well as the toxicity of cross-linkers, although PVCL itself is biocompatible. In this paper, novel biocompatible thermoresponsive poly­(<i>N</i>-vinyl caprolactam)/clay nanocomposite (PVCL-Clay) hydrogels with macroporous structure and improved mechanical characteristics are developed for the first time. The macroporosity in the hydrogel is introduced by using Pickering emulsions as templates, which contain <i>N</i>-vinyl caprolactam (VCL) monomer as dispersed phase and clay sheets as stabilizers at the interface. After polymerization, macropores are formed inside the hydrogels with the residual unreacted VCL droplets as templates. The three-dimensional PVCL polymer networks are cross-linked by the clay nanosheets. Due to the nanocomposite structure, the hydrogel exhibits better mechanical characteristics in comparison to the conventional PVCL hydrogels cross-linked by <i>N</i>,<i>N</i>′-methylene diacrylamide (BIS). The prepared PVCL-Clay hydrogel possesses remarkable temperature-responsive characteristics with a volume phase transition temperature (VPTT) around 35 °C, and provides a feasible platform for cell culture. With macroporous structure and good mechanical characteristics as well as flexible assembly performance, the proposed biocompatible thermoresponsive PVCL-Clay nanocomposite hydrogels are ideal material candidates for biomedical, analytical, and other applications such as entrapment of enzymes, cell culture, tissue engineering, and affinity and displacement chromatography

    Differentiation among HC, iRBD and PD patients by the brief test in validation.

    No full text
    <p>(A) Scatterplots of individual scores with the respective group median and 25th and 75th percentiles for the brief test in validation. (B) Receiver Operating Characteristic (ROC) curves showing the relationship between the sensitivity and specificity of the brief test in validation. ***<i>P</i><0.001, **<i>P</i><0.01</p

    DATA (Olfactory Test in iRBD and PD).xlsx

    No full text
    <p>Odor identification was evaluated in iRBD patients (n=54), PD patients (n=54) and healthy controls (n=54) in China. With the identification data, a brief odor identification test was established and then validated in other subjects.</p

    Differentiation among HC, iRBD and PD patients by the odor identification tests.

    No full text
    <p>(A) Scatterplots of individual scores with the respective group median and 25th and 75th percentiles for the Sniffin’ Sticks. (B) Receiver Operating Characteristic (ROC) curves showing the relationship between sensitivity and specificity of the Sniffin’ Sticks (dotted lines) and the brief test (solid lines). ***<i>P</i><0.001</p
    corecore