20 research outputs found

    In vitro evaluation of the antitumor effect of bismuth lipophilic nanoparticles (BisBAL NPs) on breast cancer cells

    Get PDF
    Aim: The objective of this study was to evaluate the antitumor activity of lipophilic bismuth nanoparticles (BisBAL NPs) on breast cancer cells. Materials and methods: The effect of varying concentrations of BisBAL NPs was evaluated on human MCF-7 breast cancer cells and on MCF-10A fibrocystic mammary epitheliocytes as noncancer control cells. Cell viability was evaluated with the MTT assay, plasma membrane integrity was analyzed with the calcein AM assay, genotoxicity with the comet assay, and apoptosis with the Annexin V/7-AAD assay. Results: BisBAL NPs were spherical in shape (average diameter, 28 nm) and agglomerated into dense electronic clusters. BisBAL NP induced a dose-dependent growth inhibition. Most importantly, growth inhibition was higher for MCF-7 cells than for MCF-10A cells. At 1 µM BisBAL NP, MCF-7 growth inhibition was 51%, while it was 11% for MCF-10A; at 25 µM BisBAL NP, the growth inhibition was 81% for MCF-7 and 24% for MCF-10A. With respect to mechanisms of action, a 24-hour exposure of 10 and 100 µM BisBAL NP caused loss of cell membrane integrity and fragmentation of tumor cell DNA. BisBAL NPs at 10 µM were genotoxic to and caused apoptosis of breast cancer cells. Conclusion: BisBAL NP-induced growth inhibition is dose dependent, and breast cancer cells are more vulnerable than noncancer breast cells. The mechanism of action of BisBAL NPs may include loss of plasma membrane integrity and a genotoxic effect on the genomic DNA of breast cancer cells. Keywords: antitumor activity, bismuth nanoparticles, breast cancer, chemotherapy, cytotoxicit

    Cumulative antitumor effect of bismuth lipophilic nanoparticles and cetylpyridinium chloride in inhibiting the growth of lung cancer

    Get PDF
    Objective: To determine the combined antitumor effect of bismuth lipophilic nanoparticles (BisBAL NP) and cetylpyridinium chloride (CPC) on human lung tumor cells. Material and methods: The human lung tumor cells A549 were exposed to 1–100 µM BisBAL NP or CPC, either separately or in a 1:1 combination. Cell viability was measured with the PrestoBlue assay, the LIVE/DEAD assay, and fluorescence microscopy. The integrity and morphology of cellular microtubules were analyzed by immunofluorescence. Results: A 24-h exposure to 1 µM solutions reduced A549 growth with 21.5% for BisBAL NP, 70.5% for CPC, and 92.4% for the combination ( p < 0.0001), while a 50 µM BisBAL NP/CPC mixture inhibited cell growth with 99% ( p < 0.0001). BisBAL NP-curcumin conjugates were internalized within 30 min of exposure and could be traced within the nucleus of tumor cells within 2 h. BisBAL NP, but not CPC, interfered with microtubule organization, thus interrupting cell replication, similar to the action mechanism of docetaxel. Conclusion: The growth inhibition of A549 human tumor cells by BisBAL NP and CPC was cumulative as of 1 µM. The BisBAL NP/CPC combination may constitute an innovative and cost-effective alternative for treating human lung cancer

    Sampling and composition of airborne particulate matter (PM10) from two locations of Mexico City

    No full text
    The PM10 airborne particulate matter with an aerodynamic diameter ≤10 µm is considered as a risk factor of various adverse health outcomes, including lung cancer. Here we described the sampling and composition of PM10 collected from an industrial zone (IZ), and a commercial zone (CZ) of Mexico City. The PM10 was collected with a high-volume sampler in the above mentioned locations and both types of PM10 sampled were characterized by the content of polycyclic aromatic hydrocarbons (PAHs), metals, and endotoxin. The endotoxin PM10 content from IZ and CZ displayed 138.4 UE/mg and 170.4 UE/mg of PM10, respectively

    Deciphering the Code between Air Pollution and Disease: The Effect of Particulate Matter on Cancer Hallmarks

    No full text
    Air pollution has been recognized as a global health problem, causing around 7 million deaths worldwide and representing one of the highest environmental crises that we are now facing. Close to 30% of new lung cancer cases are associated with air pollution, and the impact is more evident in major cities. In this review, we summarize and discuss the evidence regarding the effect of particulate matter (PM) and its impact in carcinogenesis, considering the &ldquo;hallmarks of cancer&rdquo; described by Hanahan and Weinberg in 2000 and 2011 as a guide to describing the findings that support the impact of particulate matter during the cancer continuum

    Nucleotide Excision Repair Pathway Activity Is Inhibited by Airborne Particulate Matter (PM<sub>10</sub>) through XPA Deregulation in Lung Epithelial Cells

    No full text
    Airborne particulate matter with a diameter size of ≤10 µm (PM10) is a carcinogen that contains polycyclic aromatic hydrocarbons (PAH), which form PAH–DNA adducts. However, the way in which these adducts are managed by DNA repair pathways in cells exposed to PM10 has been partially described. We evaluated the effect of PM10 on nucleotide excision repair (NER) activity and on the levels of different proteins of this pathway that eliminate bulky DNA adducts. Our results showed that human lung epithelial cells (A549) exposed to 10 µg/cm2 of PM10 exhibited PAH–DNA adducts as well as an increase in RAD23 and XPD protein levels (first responders in NER). In addition, PM10 increased the levels of H4K20me2, a recruitment signal for XPA. However, we observed a decrease in total and phosphorylated XPA (Ser196) and an increase in phosphatase WIP1, aside from the absence of XPA–RPA complex, which participates in DNA-damage removal. Additionally, an NER activity assay demonstrated inhibition of the NER functionality in cells exposed to PM10, indicating that XPA alterations led to deficiencies in DNA repair. These results demonstrate that PM10 exposure induces an accumulation of DNA damage that is associated with NER inhibition, highlighting the role of PM10 as an important contributor to lung cancer

    The Road to Malignant Cell Transformation after Particulate Matter Exposure: From Oxidative Stress to Genotoxicity

    No full text
    In cells, oxidative stress is an imbalance between the production/accumulation of oxidants and the ability of the antioxidant system to detoxify these reactive products. Reactive oxygen species (ROS), cause multiple cellular damages through their interaction with biomolecules such as lipids, proteins, and DNA. Genotoxic damage caused by oxidative stress has become relevant since it can lead to mutation and play a central role in malignant transformation. The evidence describes chronic oxidative stress as an important factor implicated in all stages of the multistep carcinogenic process: initiation, promotion, and progression. In recent years, ambient air pollution by particulate matter (PM) has been cataloged as a cancer risk factor, increasing the incidence of different types of tumors. Epidemiological and toxicological evidence shows how PM-induced oxidative stress could mediate multiple events oriented to carcinogenesis, such as proliferative signaling, evasion of growth suppressors, resistance to cell death, induction of angiogenesis, and activation of invasion/metastasis pathways. In this review, we summarize the findings regarding the involvement of oxidative and genotoxic mechanisms generated by PM in malignant cell transformation. We also discuss the importance of new approaches oriented to studying the development of tumors associated with PM with more accuracy, pursuing the goal of weighing the impact of oxidative stress and genotoxicity as one of the main mechanisms associated with its carcinogenic potential

    Particulate Matter (PM10) Promotes Cell Invasion through Epithelial&ndash;Mesenchymal Transition (EMT) by TGF-&beta; Activation in A549 Lung Cells

    No full text
    Air pollution presents a major environmental problem, inducing harmful effects on human health. Particulate matter of 10 &mu;m or less in diameter (PM10) is considered an important risk factor in lung carcinogenesis. Epithelial&ndash;mesenchymal transition (EMT) is a regulatory program capable of inducing invasion and metastasis in cancer. In this study, we demonstrated that PM10 treatment induced phosphorylation of SMAD2/3 and upregulation of SMAD4. We also reported that PM10 increased the expression and protein levels of TGFB1 (TGF-&beta;), as well as EMT markers SNAI1 (Snail), SNAI2 (Slug), ZEB1 (ZEB1), CDH2 (N-cadherin), ACTA2 (&alpha;-SMA), and VIM (vimentin) in the lung A549 cell line. Cell exposed to PM10 also showed a decrease in the expression of CDH1 (E-cadherin). We also demonstrated that expression levels of these EMT markers were reduced when cells are transfected with small interfering RNAs (siRNAs) against TGFB1. Interestingly, phosphorylation of SMAD2/3 and upregulation of SMAD induced by PM10 were not affected by transfection of TGFB1 siRNAs. Finally, cells treated with PM10 exhibited an increase in the capacity of invasiveness because of EMT induction. Our results provide new evidence regarding the effect of PM10 in EMT and the acquisition of an invasive phenotype, a hallmark necessary for lung cancer progression

    Synergistic Antitumor Activity of Gramicidin/Lipophilic Bismuth Nanoparticles (BisBAL NPs) on Human Cervical Tumor Cells

    Get PDF
    The objective of this study was to study the synergistic antitumor effect of lipophilic bismuth nanoparticles (BisBAL NPs) with the antibiotic solution Neo-Poly gramicidin on human cervical tumor cells. The effect of BisBAL NPs and Neo-Poly gramicidin solution on cervical cancer cell line (HeLa) was determined by the MTT cell viability assay and fluorescence microscopy. After a 24-h exposure to 0.1× Neo-Poly gramicidin HeLa cell growth decreased 94%. Fluorescence microscopy confirmed the antitumor effect cell death was higher among treated than among non-treated cells cells. Individually, gramicidin (0.04 mg/mL) inhibited HeLa tumor cell growth most (40%), and neomycin (0.04 mg/mL) least (21%). Gramicidin (0.3 mg/mL) in combination with different concentrations (1–150 μM) of BisBAL NPs had a synergistic antitumor effect against HeLa cells, reaching an < 86% tumor growth inhibition. As far as we know, we are the first to describe the antitumor activity of the antibiotic Neo-Poly gramicidin on a human cervical cancer cell line. The action mechanism of gramicidin/BisBAL NP is based on a strong damage on cell membrane and nucleus of tumor cells. A synergistic effect of gramicidin with BisBAL NPs may be useful as an alternative therapy for cervical cancer patients
    corecore