36 research outputs found

    Ultracold Fermi gas with repulsive interactions

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 95-100).This thesis presents results from experiments of ultracold atomic Fermi gases with repulsive interaction. Itinerant ferromagnetism was studied by simulating the Stoner model with a strongly interacting Fermi gas of ultracold atoms. We observed nonmonotonic behavior of lifetime, kinetic energy, and size for increasing repulsive interactions, which is in good agreement with a mean-field model for the ferromagnetic phase transition. However, later research showed the absence of enhanced spin fluctuation, which is definitive evidence against the ferromagnetic phase transition. Still, our work triggered a lot of research on repulsive interactions in ultracold Fermi gases. A quantitative approach is taken to study ultracold Fermi gases with repulsive interaction. This is done by careful measurements of density profiles in equilibrium. First, Pauli paramagnetism is observed in trapped atomic samples which have an inhomogeneous density due to the harmonic confinement potential. We experimentally measure the susceptibility of ideal Fermi gas. This research shows that ultracold atoms can serve as model systems to demonstrate well-known textbook physics in a more ideal way than other systems. Then, Fermi gases with repulsive interactions are characterized by measuring their compressibility as a function of interaction strength. The compressibility is obtained from in-trap density distributions monitored by phase contrast imaging. For interaction parameters kFa > 0.25 fast decay of the gas prevents the observation of equilibrium profiles. For smaller interaction parameters, the results are adequately described by first-order perturbation theory. A novel phase contrast imaging method compensates for dispersive distortions of the images.by Ye-Ryoung Lee.Ph.D

    Pauli paramagnetism of an ideal Fermi gas

    Full text link
    We show how to use trapped ultracold atoms to measure the magnetic susceptibility of a two-component Fermi gas. The method is illustrated for a non-interacting gas of 6^6Li, using the tunability of interactions around a wide Feshbach resonances. The susceptibility versus effective magnetic field is directly obtained from the inhomogeneous density profile of the trapped atomic cloud. The wings of the cloud realize the high field limit where the polarization approaches 100%, which is not accessible for an electron gas.Comment: 5 pages, 4 figure

    Calibration of second-order correlation functions for non-stationary sources with a multi-start multi-stop time-to-digital converter

    Full text link
    A novel high-throughput second-order-correlation measurement system is developed which records and makes use of all the arrival times of photons detected at both start and stop detectors. This system is suitable particularly for a light source having a high photon flux and a long coherence time since it is more efficient than conventional methods by an amount equal to the product of the count rate and the correlation time of the light source. We have used this system in carefully investigating the dead time effects of detectors and photon counters on the second-order correlation function in the two-detector configuration. For a non-stationary light source, distortion of original signal was observed at high photon flux. A systematic way of calibrating the second-order correlation function has been devised by introducing a concept of an effective dead time of the entire measurement system.Comment: 7 pages, 6 figure

    Analytic framework for understanding the competing multiple light scattering processes

    Get PDF
    In many complex physical phenomena such as wave propagation in scattering media, the process of interest often cannot be easily distinguished from other processes because only the total combined process is accessible. This makes it difficult to extract the precise knowledge of each subprocess. Here, we derive an analytic expression describing the way the eigenchannel coupling of the total process distributes its energy to the individual subprocesses, with only partial information on each subprocess such as the average eigenvalue 〈τ〉 and enhancement factor η. We found that the ratio of (η − 1)〈τ〉 between two subprocesses is a critical parameter determining the preferable subprocess in the energy coupling. This work provides a new analytic framework for understanding the effect of wavefront shaping in the control of wave propagation in disordered media. © 2019, The Author(s

    Reduction of Cav1.3 channels in dorsal hippocampus impairs the development of dentate gyrus newborn neurons and hippocampal-dependent memory tasks

    Get PDF
    Cav1.3 has been suggested to mediate hippocampal neurogenesis of adult mice and contribute to hippocampal-dependent learning and memory processes. However, the mechanism of Cav1.3 contribution in these processes is unclear. Here, roles of Cav1.3 of mouse dorsal hippocampus during newborn cell development were examined. We find that knockout (KO) of Cav1.3 resulted in the reduction of survival of newborn neurons at 28 days old after mitosis. The retroviral eGFP expression showed that both dendritic complexity and the number and length of mossy fiber bouton (MFB) filopodia of newborn neurons at 14 days old were significantly reduced in KO mice. Both contextual fear conditioning (CFC) and object-location recognition tasks were impaired in recent (1 day) memory test while passive avoidance task was impaired only in remote ( 20 days) memory in KO mice. Results using adeno-associated virus (AAV)-mediated Cav1.3 knock-down (KD) or retrovirus-mediated KD in dorsal hippocampal DG area showed that the recent memory of CFC was impaired in both KD mice but the remote memory was impaired only in AAV KD mice, suggesting that Cav1.3 of mature neurons play important roles in both recent and remote CFC memory while Cav1.3 in newborn neurons is selectively involved in the recent CFC memory process. Meanwhile, AAV KD of Cav1.3 in ventral hippocampal area has no effect on the recent CFC memory. In conclusion, the results suggest that Cav1.3 in newborn neurons of dorsal hippocampus is involved in the survival of newborn neurons while mediating developments of dendritic and axonal processes of newborn cells and plays a role in the memory process differentially depending on the stage of maturation and the type of learning task. © 2017 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Exploiting volumetric wave correlation for enhanced depth imaging in scattering medium

    No full text
    The authors achieve ultrahigh resolution and depth volumetric imaging in complex media by recording a volumetric reflection matrix covering individual wavelengths and angles and developing reconstruction algorithms based on volumetric wave correlation

    Iterative optimization of time-gated reflectance for the efficient light energy delivery within scattering media

    No full text
    © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement In complex media, light waves are diffused both in space and time due to multiple light scattering, and its intensity is attenuated with the increase of propagation depth. In this paper, we propose an iterative wavefront shaping method for enhancing time-gated reflection intensity, which leads to efficient light energy delivery to a target object embedded in a highly scattering medium. We achieved an over 10 times enhancement of reflectance at the specific flight time and demonstrated the focusing of light energy to the target object. Since the proposed method does not require reflection matrix measurement, it will be highly suited to samples in mechanically dynamic condition

    Wave propagation dynamics inside a complex scattering medium by the temporal control of backscattered waves

    No full text
    Shaping the wavefront of an incident wave to a complex scattering medium has demonstrated interesting possibilities, such as sub-diffraction wave focusing and light energy delivery enhancement. However, wavefront shaping has mainly been based on the control of transmitted waves that are inaccessible in most realistic applications. Here, we investigate the effect of maximizing the backscattered waves at a specific flight time on wave propagation dynamics and energy transport. We find both experimentally and numerically that the maximization at a short flight time focuses waves on the particles constituting the scattering medium, leading to the attenuation of the wave transport. On the contrary, maximization at a long flight time induces constructive wave interference inside the medium and thus enhances wave transport. We provide a theoretical model that explains this interesting transition behavior based on wave correlation. Our study provides a fundamental understanding of the effect of wave control on wave dynamics inside scattering medium. © 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.11Nsciescopu
    corecore