5,800 research outputs found

    Molecular Lines of 13 Galactic Infrared Bubble Regions

    Full text link
    We investigated the physical properties of molecular clouds and star formation processes around infrared bubbles which are essentially expanding HII regions. We performed observations of 13 galactic infrared bubble fields containing 18 bubbles. Five molecular lines, 12CO (J=1-0), 13CO (J=1-0), C18O(J=1-0), HCN (J=1-0), and HCO+ (J=1-0), were observed, and several publicly available surveys, GLIMPSE, MIPSGAL, ATLASGAL, BGPS, VGPS, MAGPIS, and NVSS, were used for comparison. We find that these bubbles are generally connected with molecular clouds, most of which are giant. Several bubble regions display velocity gradients and broad shifted profiles, which could be due to the expansion of bubbles. The masses of molecular clouds within bubbles range from 100 to 19,000 solar mass, and their dynamic ages are about 0.3-3.7 Myr, which takes into account the internal turbulence pressure of surrounding molecular clouds. Clumps are found in the vicinity of all 18 bubbles, and molecular clouds near four of these bubbles with larger angular sizes show shell-like morphologies, indicating that either collect-and-collapse or radiation-driven implosion processes may have occurred. Due to the contamination of adjacent molecular clouds, only six bubble regions are appropriate to search for outflows, and we find that four of them have outflow activities. Three bubbles display ultra-compact HII regions at their borders, and one of them is probably responsible for its outflow. In total, only six bubbles show star formation activities in the vicinity, and we suggest that star formation processes might have been triggered.Comment: 55 Pages, 32 figures. Accepted for publication in A

    Sub-quadratic scaling real-space random-phase approximation correlation energy calculations for periodic systems with numerical atomic orbitals

    Full text link
    The random phase approximation (RPA) as formulated as an orbital-dependent, fifth-rung functional within the density functional theory (DFT) framework offers a promising approach for calculating the ground-state energies and the derived properties of real materials. Its widespread use to large-size, complex materials is however impeded by the significantly increased computational cost, compared to lower-rung functionals. The standard implementation exhibits an O(N4)\mathcal{O}(N^4)-scaling behavior with respect to system size NN. In this work, we develop a low-scaling RPA algorithm for periodic systems, based on the numerical atomic orbital (NAO) basis-set framework and a localized variant of the resolution of identity (RI) approximation. The rate-determining step for RPA calculations -- the evaluation of non-interacting response function matrix, is reduced from O(N4)\mathcal{O}(N^4) to O(N2)\mathcal{O}(N^2) by just exploiting the sparsity of the RI expansion coefficients, resultant from localized RI (LRI) scheme and the strict locality of NAOs. The computational cost of this step can be further reduced to linear scaling if the decay behavior of the Green's function in real space can be further taken into account. Benchmark calculations against existing k\textbf k-space based implementation confirms the validity and high numerical precision of the present algorithm and implementation. The new RPA algorithm allows us to readily handle three-dimensional, closely-packed solid state materials with over 1000 atoms. The algorithm and numerical techniques developed in this work also have implications for developing low-scaling algorithms for other correlated methods to be applicable to large-scale extended materials

    Simulation and Analysis of Indoor Visible Light Propagation Characteristics Based on the Method of SBR/Image

    Get PDF
    The indoor visible light propagation characteristics are simulated and analyzed using the method of SBR/Image (shooting and bounding ray tracing/Image). A good agreement is achieved between the results simulated and the results given in published literature. So the correctness of the method has been validated. Some propagation parameters are obtained in the simulation, such as the indoor received power distribution, statistical distribution of phase angle of received power, RMS (root mean square) delay spread, direction of arrival, and Doppler shift. The foundation for the wireless network coverage of indoor visible light communication system is provided by the analysis of the above results
    • …
    corecore