430 research outputs found

    Application of Time-Fractional Order Bloch Equation in Magnetic Resonance Fingerprinting

    Full text link
    Magnetic resonance fingerprinting (MRF) is one novel fast quantitative imaging framework for simultaneous quantification of multiple parameters with pseudo-randomized acquisition patterns. The accuracy of the resulting multi-parameters is very important for clinical applications. In this paper, we derived signal evolutions from the anomalous relaxation using a fractional calculus. More specifically, we utilized time-fractional order extension of the Bloch equations to generate dictionary to provide more complex system descriptions for MRF applications. The representative results of phantom experiments demonstrated the good accuracy performance when applying the time-fractional order Bloch equations to generate dictionary entries in the MRF framework. The utility of the proposed method is also validated by in-vivo study.Comment: Accepted at 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019

    Antagonistic control of a dual-input mammalian gene switch by food additives

    Get PDF
    Synthetic biology has significantly advanced the design of mammalian trigger-inducible transgene-control devices that are able to programme complex cellular behaviour. Fruit-based benzoate derivatives licensed as food additives, such as flavours (e.g. vanillate) and preservatives (e.g. benzoate), are a particularly attractive class of trigger compounds for orthogonal mammalian transgene control devices because of their innocuousness, physiological compatibility and simple oral administration. Capitalizing on the genetic componentry of the soil bacterium Comamonas testosteroni, which has evolved to catabolize a variety of aromatic compounds, we have designed different mammalian gene expression systems that could be induced and repressed by the food additives benzoate and vanillate. When implanting designer cells engineered for gene switch-driven expression of the human placental secreted alkaline phosphatase (SEAP) into mice, blood SEAP levels of treated animals directly correlated with a benzoate-enriched drinking programme. Additionally, the benzoate-/vanillate-responsive device was compatible with other transgene control systems and could be assembled into higher-order control networks providing expression dynamics reminiscent of a lap-timing stopwatch. Designer gene switches using licensed food additives as trigger compounds to achieve antagonistic dual-input expression profiles and provide novel control topologies and regulation dynamics may advance future gene- and cell-based therapie

    Follow-ups Also Matter: Improving Contextual Bandits via Post-serving Contexts

    Full text link
    Standard contextual bandit problem assumes that all the relevant contexts are observed before the algorithm chooses an arm. This modeling paradigm, while useful, often falls short when dealing with problems in which valuable additional context can be observed after arm selection. For example, content recommendation platforms like Youtube, Instagram, Tiktok also observe valuable follow-up information pertinent to the user's reward after recommendation (e.g., how long the user stayed, what is the user's watch speed, etc.). To improve online learning efficiency in these applications, we study a novel contextual bandit problem with post-serving contexts and design a new algorithm, poLinUCB, that achieves tight regret under standard assumptions. Core to our technical proof is a robustified and generalized version of the well-known Elliptical Potential Lemma (EPL), which can accommodate noise in data. Such robustification is necessary for tackling our problem, and we believe it could also be of general interest. Extensive empirical tests on both synthetic and real-world datasets demonstrate the significant benefit of utilizing post-serving contexts as well as the superior performance of our algorithm over the state-of-the-art approaches.Comment: NeurIPS 2023 (Spotlight
    • …
    corecore