51 research outputs found

    Sensory experience-dependent synaptic modifications in the visual cortex

    Get PDF
    During early postnatal development, the brain receives tremendous input from developing sensory organs. These sensory inputs shape neuronal networks in the cortex so as to adapt the neuronal circuits to the animal's living environment. Thus, synaptic connections in the cortex mature in a sensory experience-dependent manner. In this thesis, I studied 1) an endogenous mechanism that is crucial for regulating normal, experience-dependent synaptic modification in adult rodents, and 2) how dysregulation of experience-dependent plasticity contributes to a severe mental retardation, Angelman syndrome.Doctor of Philosoph

    Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity

    Get PDF
    NMDA-type glutamate receptors (NMDARs) mediate many forms of synaptic plasticity. These tetrameric receptors consist of two obligatory NR1 subunits and two regulatory subunits, usually a combination of NR2A and NR2B. In the neonatal neocortex NR2B-containing NMDARs predominate, and sensory experience facilitates a developmental switch in which NR2A levels increase relative to NR2B. In this review, we clarify the roles of NR2 subunits in synaptic plasticity, and argue that a primary role of this shift is to control the threshold, rather than determining the direction, for modifying synaptic strength. We also discuss recent studies that illuminate the mechanisms regulating NR2 subunits, and suggest that the NR2A/NR2B ratio is regulated by multiple means, which may control the ratio both locally at individual synapses and globally in a cell-wide manner. Finally, we use the visual cortex as a model system to illustrate how activity-dependent modifications in the NR2A/NR2B ratio may contribute to the development of cortical functions

    Equivalent circuit analysis of a three-carrier electrolyte/electrode system

    Get PDF
    Perovskite type proton conductors are known to show non-monotonous transient responses due to non-ignorable contributions of holes and oxide ions as minor carriers. Efforts have been made to simulate the behavior of the three-carrier systems by numerical calculations1-4). In most cases, however, the calculation assumes reversible electrodes, and the results are not directly applicable for analyses of experimental results such as impedance spectra. The purpose of this study is to develop an equivalent circuit model of a three-carrier conductor as a simple but theoretically feasible tool to be used for practical analyses. In the modeling, charge carriers were assumed to be Hi•, VO••, and h•, for which the gradients of respective electrochemical potentials were taken as the driving forces in the following continuity equations, Please click Additional Files below to see the full abstract

    Visual Deprivation Modifies Both Presynaptic Glutamate Release and the Composition of Perisynaptic/Extrasynaptic NMDA Receptors in Adult Visual Cortex

    Get PDF
    Use-dependent modifications of synapses have been well described in the developing visual cortex, but the ability for experience to modify synapses in the adult visual cortex is poorly understood. We found that 10 d of late-onset visual deprivation modifies both presynaptic and postsynaptic elements at the layer 4-->2/3 connection in the visual cortex of adult mice, and these changes differ from those observed in juveniles. Although visual deprivation in juvenile mice modifies the subunit composition and increases the current duration of synaptic NMDA receptors (NMDARs), no such effect is observed at synapses between layer 4 and layer 2/3 pyramidal neurons in adult mice. Surprisingly, visual deprivation in adult mice enhances the temporal summation of NMDAR-mediated currents induced by bursts of high-frequency stimulation. The enhanced temporal summation of NMDAR-mediated currents in deprived cortex could not be explained by a reduction in the rate of synaptic depression, because our data indicate that late-onset visual deprivation actually increases the rate of synaptic depression. Biochemical and electrophysiological evidence instead suggest that the enhanced temporal summation in adult mice could be accounted for by a change in the molecular composition of NMDARs at perisynaptic/extrasynaptic sites. Our data demonstrate that the experience-dependent modifications observed in the adult visual cortex are different from those observed during development. These differences may help to explain the unique consequences of sensory deprivation on plasticity in the developing versus mature cortex

    Behavioral deficits in an Angelman syndrome model: Effects of genetic background and age

    Get PDF
    Angelman syndrome (AS) is a severe neurodevelopmental disorder associated with disruption of maternally inherited UBE3A (ubiquitin protein ligase E3A) expression. At the present time, there is no effective treatment for AS. Mouse lines with loss of maternal Ube3a (Ube3am–/p+) recapitulate multiple aspects of the clinical AS profile, including impaired motor coordination, learning deficits, and seizures. Thus, these genetic mouse models could serve as behavioral screens for preclinical efficacy testing, a critical component of drug discovery for AS intervention. However, the severity and consistency of abnormal phenotypes reported in Ube3am–/p+ mice can vary, dependent upon age and background strain, which is problematic for the detection of beneficial drug effects. As part of an ongoing AS drug discovery initiative, we characterized Ube3am–/p+ mice on either a 129S7/SvEvBrd-Hprtb-m2 (129) or C57BL/6J (B6) background across a range of functional domains and ages to identify reproducible and sufficiently large phenotypes suitable for screening therapeutic compounds. The results from the study showed that Ube3am–/p+ mice have significant deficits in acquisition and reversal learning in the Morris water maze. The findings also demonstrated that Ube3am–/p+ mice exhibit motor impairment in a rotarod task, hypoactivity, reduced rearing and marble-burying, and deficient fear conditioning. Overall, these profiles of abnormal phenotypes can provide behavioral targets for evaluating effects of novel therapeutic strategies relevant to AS

    Investigation of cathodic reaction in SOFCs and PCFCs by using patterned thin film model electrodes

    Get PDF
    In recent years, fuel cells operating at relatively high temperatures, such as solid oxide fuel cells (SOFCs) using an oxide ion conducting electrolyte and proton ceramics fuel cells (PCFCs) using an proton conducting electrolyte, attract attentions as high-efficient energy-conversion devices. For further enhancements of the performance and the durability of SCFCs and PCFCs, it is essential to understand the electrode reactions. In particular, the knowledge on the dominant reaction path in the electrodes would help us to optimize the material and the microstructure of the electrode. Please click Additional Files below to see the full abstract

    Engineering Transition Metal Layers for Long Lasting Anionic Redox in Layered Sodium Manganese Oxide

    Get PDF
    Oxygen-redox-based-layered cathode materials are of great importance in realizing high-energy-density sodium-ion batteries (SIBs) that can satisfy the demands of next-generation energy storage technologies. However, Mn-based-layered materials (P2-type Na-poor Nay[AxMn1−x]O2, where A = alkali ions) still suffer from poor reversibility during oxygen-redox reactions and low conductivity. In this work, the dual Li and Co replacement is investigated in P2-type-layered NaxMnO2. Experimentally and theoretically, it is demonstrated that the efficacy of the dual Li and Co replacement in Na0.6[Li0.15Co0.15Mn0.7]O2 is that it improves the structural and cycling stability despite the reversible Li migration from the transition metal layer during de-/sodiation. Operando X-ray diffraction and ex situ neutron diffraction analysis prove that the material maintains a P2-type structure during the entire range of Na+ extraction and insertion with a small volume change of ≈4.3%. In Na0.6[Li0.15Co0.15Mn0.7]O2, the reversible electrochemical activity of Co3+/Co4+, Mn3+/Mn4+, and O2-/(O2)n- redox is identified as a reliable mechanism for the remarkable stable electrochemical performance. From a broader perspective, this study highlights a possible design roadmap for developing cathode materials with optimized cationic and anionic activities and excellent structural stabilities for SIBs.</p

    Ube3a is required for experience-dependent maturation of the neocortex

    Get PDF
    Experience-dependent maturation of neocortical circuits is required for normal sensory and cognitive abilities, which are distorted in neurodevelopmental disorders. We have tested whether experience-dependent neocortical modifications require Ube3a, an E3 ubiquitin ligase whose dysregulation has been implicated in autism and Angelman syndrome (AS). Using visual cortex as a model, we demonstrate that experience-dependent maturation of excitatory cortical circuits is severely impaired in AS mice deficient in Ube3a. This developmental defect is associated with profound impairments in neocortical plasticity. Remarkably, normal plasticity is preserved under conditions of sensory deprivation, but rapidly lost by sensory experiences. The loss of neocortical plasticity is reversible, as late-onset visual deprivation restores normal synaptic plasticity. Further, Ube3a-deficient mice lack ocular dominance plasticity in vivo when challenged with monocular deprivation. These results show that Ube3a is necessary to maintain plasticity during experience-dependent neocortical development, and suggest that loss of neocortical plasticity contributes to deficits associated with AS
    corecore