443 research outputs found

    Rational engineering of a cold-adapted α-amylase from the Antarctic ciliate Euplotes focardii for simultaneous improvement of thermostability and catalytic activity

    Get PDF
    The α-amylases are endo-acting enzyme which hydrolyze starch by randomly cleaving the 1,4-α-D-glucosidic linkages between the adjacent glucose units in linear amylose chain. It has significant advantages in a wide range of applications, in particular in food industry. The eukaryotic α-amylase isolated from the Antarctic ciliated protozoon Euplotes focardii (EfAmy) is an alkaline enzyme, differently from most of the α-amylases characterized so far. Furthermore, EfAmy shows the characteristics of a psychrophilic α-amylase, such as the highest hydrolytic activity at low temperature and high thermolability, which is the major drawback of cold-active enzymes in industrial applications. In this work, we applied site-directed mutagenesis combined with rational design to generate a cold-active EfAmy with improved thermostability and catalytic efficiency at low temperatures. We engineered two EfAmy mutants: in one mutant we introduced Pro residues on the A and B domains in surface loops. In the second mutant we changed Val into Thr residues close to the catalytic site. The aim of these substitutions was to rigidify the molecular structure of the enzyme. Furthermore, we also analyzed mutants containing these combined substitutions. Biochemical enzymatic assays of engineered versions of EfAmy revealed that the combination of mutations at the surface loops increased thermostability and catalytic efficiency of the enzyme. The possible mechanisms responsible for changes in the biochemical properties are discussed by analyzing the three-dimensional structural model.IMPORTANCE Cold-adapted enzymes have high specific activity at low and moderate temperatures, a property that can be extremely useful in various applications as it implies a reduction in energy consumption during the catalyzed reaction. However, the concurrent high thermolability of cold-adapted enzymes often limits their applications in industrial processes. The α-amylase from the psychrophilic Antarctic ciliate Euplotes focardii (named EfAmy) is a cold-adapted enzyme with optimal catalytic activity in alkaline environment. These unique features distinguish it from most α-amylases characterized so far. In this work, we engineered the novel EfAmy with improved thermostability, substrate binding affinity and catalytic efficiency to various extents, without impact on its pH preference. These characteristics can be considered an important property to be used in food, detergents, textiles and other industrial applications. The enzyme engineering strategy developed in this study may also provide useful knowledge for future optimization of molecules to be used in particular industrial applications

    Retrospective analysis for thirty-nine patients with solitary fibrous tumor of pleura and review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Solitary fibrous tumor of the pleura (SFTP) is an uncommon neoplasm arising from mesenchymal cells. The aim of this study is to summarize the experience and the outcome of the surgical treatment for 39 cases of SFTP.</p> <p>Methods</p> <p>From January 2004 to December 2008, 39 patients underwent surgical resection of SFTP in our department. All patients had clinical follow-up by the same team of surgeons. The mean follow-up was 40.3 months.</p> <p>Results</p> <p>A local removal of the neoplasm was accomplished by video-assisted thoracic surgery (VATS) in 9 patients (group A) and by thoracotomy in 30 patients (group B) respectively. Comparing with group B, operations in group A took significantly less operative time, blood loss and spent less time in the intensive care unit and hospital. All specimens were positive for CD34 and Bcl-2. One patient developed recurrence, and the remaining 38 patients are alive and disease free at the end of follow-up.</p> <p>Conclusions</p> <p>Malignant SFTP still had the potential recurrence. VATS represents the more acceptable choice for the selected patients with SFTP.</p

    A stochastic model for identifying differential gene pair co-expression patterns in prostate cancer progression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification of gene differential co-expression patterns between cancer stages is a newly developing method to reveal the underlying molecular mechanisms of carcinogenesis. Most researches of this subject lack an algorithm useful for performing a statistical significance assessment involving cancer progression. Lacking this specific algorithm is apparently absent in identifying precise gene pairs correlating to cancer progression.</p> <p>Results</p> <p>In this investigation we studied gene pair co-expression change by using a stochastic process model for approximating the underlying dynamic procedure of the co-expression change during cancer progression. Also, we presented a novel analytical method named 'Stochastic process model for Identifying differentially co-expressed Gene pair' (SIG method). This method has been applied to two well known prostate cancer data sets: hormone sensitive versus hormone resistant, and healthy versus cancerous. From these data sets, 428,582 gene pairs and 303,992 gene pairs were identified respectively. Afterwards, we used two different current statistical methods to the same data sets, which were developed to identify gene pair differential co-expression and did not consider cancer progression in algorithm. We then compared these results from three different perspectives: progression analysis, gene pair identification effectiveness analysis, and pathway enrichment analysis. Statistical methods were used to quantify the quality and performance of these different perspectives. They included: Re-identification Scale (RS) and Progression Score (PS) in progression analysis, True Positive Rate (TPR) in gene pair analysis, and Pathway Enrichment Score (PES) in pathway analysis. Our results show small values of RS and large values of PS, TPR, and PES; thus, suggesting that gene pairs identified by the SIG method are highly correlated with cancer progression, and highly enriched in disease-specific pathways. From this research, several gene interaction networks inferred could provide clues for the mechanism of prostate cancer progression.</p> <p>Conclusion</p> <p>The SIG method reliably identifies cancer progression correlated gene pairs, and performs well both in gene pair ontology analysis and in pathway enrichment analysis. This method provides an effective means of understanding the molecular mechanism of carcinogenesis by appropriately tracking down the process of cancer progression.</p

    Magnetic properties of Fe intercalation FexTaSe2

    Get PDF
    Intercalation of transition metal dichalcogenides with magnetic elements has been the subject of increasing research interest, aiming to explore novel magnetic materials with anisotropy and spin-orbit coupling. In this paper, two magnetic samples with varying Fe content have been prepared using different growth conditions via the chemical vapor transport method. A comprehensive investigation of the magnetic properties of the materials has been conducted using the Physical Property Measurement System (PPMS, EvercoolⅡ-9T, Quantum Design). The results reveal distinct features in the studied materials. Fe0.12TaSe2 exhibits significant ferromagnetism with a Curie transition temperature of 50 K. However, its in-plane magnetism is weak and no significant hysteresis loop is observed below the Curie temperature. On the other hand, Fe0.25TaSe2 exhibits antiferromagnetism without any hysteresis loop and has a Néel temperature up to 130 K. This finding is quite different from the intercalated iron in FexTaS2, where only an antiferromagnetic state occurs with x larger than 0.4. Our study thus provides updated insights into the magnetic properties of this new system and serves as a reference for future investigations of TaSe2 compounds with varying iron content
    corecore