3 research outputs found

    Full Antibody Primary Structure and Microvariant Characterization in a Single Injection Using Transient Isotachophoresis and Sheathless Capillary Electrophoresis–Tandem Mass Spectrometry

    No full text
    Here we report the complete characterization of the primary structure of a multimeric glycoprotein in a single analysis by capillary electrophoresis (CE) coupled to mass spectrometry (MS). CE was coupled to electrospray ionization tandem MS by means of a sheathless interface. Transient isotachophoresis (t-ITP) was introduced in this work as an electrokinetically based preconcentration technique, allowing injection of up to 25% of the total capillary volume. Characterization was based on an adapted bottom-up proteomic strategy. Using trypsin as the sole proteolytic enzyme and data from a single injection per considered protein, 100% of the amino acid sequences of four different monoclonal antibodies could be achieved. Furthermore, illustrating the effectiveness and overall capabilities of the technique, the results were possible through identification of peptides without tryptic miscleavages or posttranslational modifications, demonstrating the potency of the technique. In addition to full sequence coverages, posttranslational modifications (PTMs) were simultaneously identified, further demonstrating the capacity of this strategy to structurally characterize glycosylations as well as faint modifications such as asparagine deamidation or aspartic acid isomerization. Together with the exquisite detection sensitivity observed, the contributions of both the CE separation mechanism and selectivity were essential to the result of the characterization with regard to that achieved with conventional MS strategies. The quality of the results indicates that recent improvements in interfacing CE-MS coupling, leading to a considerably improved sensitivity, allows characterization of the primary structure of proteins in a robust and faster manner. Taken together, these results open new research avenues for characterization of proteins through MS

    Glycoform Separation and Characterization of Cetuximab Variants by Middle-up Off-Line Capillary Zone Electrophoresis-UV/Electrospray Ionization-MS

    No full text
    Monoclonal antibodies (mAbs) are highly complex glycoproteins that present a wide range of microheterogeneities that requires multiple analytical methods for full structure assessment and quality control. Capillary zone electrophoresis-mass spectrometry (CZE-MS) couplings, especially by electrospray ionization (ESI), appear to be really attractive methods for the characterization of biological samples. However, due to the presence of non- or medium volatile salts in the background electrolyte (BGE), online CZE-ESI-MS coupling is difficult to implement for mAbs isoforms separation. Here, we report an original strategy to perform off-line CZE-ESI-MS using CZE-UV/fraction collection technology to perform CZE separation, followed by ESI-MS infusion of the different fractions using the capillary electrophoresis-electrospray ionization (CESI) interface as the nanoESI infusion platform. As the aim is to conserve electrophoretic resolution and complete compatibility with ESI-MS without sample treatment, hydroxypropylcellulose (HPC) coated capillary was used to prevent analyte adsorption and asymmetric CZE conditions involving different BGE at both ends of the capillary have been developed. The efficiency of our strategy was validated with the separation of Cetuximab charge variant by the middle-up approach. Molecular weights were measured for six charge variants detected in the CZE separation of Cetuximab subunits. The first three peaks correspond to Fc/2 variants with electrophoretic resolution up to 2.10, and the last three peaks correspond to F­(abâ€Č)<sub>2</sub> variants with average electrophoretic resolution of 1.05. Two Fc/2 C-terminal lysine variants were identified and separated. Moreover, separation of Fc/2 fragments allowed the glycoprofiling of the variants with the characterization of 7 different glycoforms. Regarding the F­(abâ€Č)<sub>2</sub> domain, 8 glycoforms were detected and separated in three different peaks following the presence of N-glycolyl neuraminic acid residues in some glycan structures. This work highlights the potential of CZE technology to perform separation of mAbs especially when they carry sialic acid carbohydrates

    Nucleos’ID: A New Search Engine Enabling the Untargeted Identification of RNA Post-transcriptional Modifications from Tandem Mass Spectrometry Analyses of Nucleosides

    No full text
    As RNA post-transcriptional modifications are of growing interest, several methods were developed for their characterization. One of them established for their identification, at the nucleosidic level, is the hyphenation of separation methods, such as liquid chromatography or capillary electrophoresis, to tandem mass spectrometry. However, to our knowledge, no software is yet available for the untargeted identification of RNA post-transcriptional modifications from MS/MS data-dependent acquisitions. Thus, very long and tedious manual data interpretations are required. To meet the need of easier and faster data interpretation, a new user-friendly search engine, called Nucleos’ID, was developed for CE-MS/MS and LC–MS/MS users. Performances of this new software were evaluated on CE-MS/MS data from nucleoside analyses of already well-described Saccharomyces cerevisiae transfer RNA and Bos taurus total tRNA extract. All samples showed great true positive, true negative, and false discovery rates considering the database size containing all modified and unmodified nucleosides referenced in the literature. The true positive and true negative rates obtained were above 0.94, while the false discovery rates were between 0.09 and 0.17. To increase the level of sample complexity, untargeted identification of several RNA modifications from Pseudomonas aeruginosa 70S ribosome was achieved by the Nucleos’ID search following CE-MS/MS analysis
    corecore