17,106 research outputs found
Learning Binary Residual Representations for Domain-specific Video Streaming
We study domain-specific video streaming. Specifically, we target a streaming
setting where the videos to be streamed from a server to a client are all in
the same domain and they have to be compressed to a small size for low-latency
transmission. Several popular video streaming services, such as the video game
streaming services of GeForce Now and Twitch, fall in this category. While
conventional video compression standards such as H.264 are commonly used for
this task, we hypothesize that one can leverage the property that the videos
are all in the same domain to achieve better video quality. Based on this
hypothesis, we propose a novel video compression pipeline. Specifically, we
first apply H.264 to compress domain-specific videos. We then train a novel
binary autoencoder to encode the leftover domain-specific residual information
frame-by-frame into binary representations. These binary representations are
then compressed and sent to the client together with the H.264 stream. In our
experiments, we show that our pipeline yields consistent gains over standard
H.264 compression across several benchmark datasets while using the same
channel bandwidth.Comment: Accepted in AAAI'18. Project website at
https://research.nvidia.com/publication/2018-02_Learning-Binary-Residua
Res2Net: A New Multi-scale Backbone Architecture
Representing features at multiple scales is of great importance for numerous
vision tasks. Recent advances in backbone convolutional neural networks (CNNs)
continually demonstrate stronger multi-scale representation ability, leading to
consistent performance gains on a wide range of applications. However, most
existing methods represent the multi-scale features in a layer-wise manner. In
this paper, we propose a novel building block for CNNs, namely Res2Net, by
constructing hierarchical residual-like connections within one single residual
block. The Res2Net represents multi-scale features at a granular level and
increases the range of receptive fields for each network layer. The proposed
Res2Net block can be plugged into the state-of-the-art backbone CNN models,
e.g., ResNet, ResNeXt, and DLA. We evaluate the Res2Net block on all these
models and demonstrate consistent performance gains over baseline models on
widely-used datasets, e.g., CIFAR-100 and ImageNet. Further ablation studies
and experimental results on representative computer vision tasks, i.e., object
detection, class activation mapping, and salient object detection, further
verify the superiority of the Res2Net over the state-of-the-art baseline
methods. The source code and trained models are available on
https://mmcheng.net/res2net/.Comment: 11 pages, 7 figure
- …