250 research outputs found

    Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval

    Get PDF

    A green intelligent routing algorithm supporting flexible QoS for many-to-many multicast

    Get PDF
    The tremendous energy consumption attributed to the Information and Communication Technology (ICT) field has become a persistent concern during the last few years, attracting significant academic and industrial efforts. Networks have begun to be improved towards being “green”. Considering Quality of Service (QoS) and power consumption for green Internet, a Green Intelligent flexible QoS many-to-many Multicast routing algorithm (GIQM) is presented in this paper. In the proposed algorithm, a Rendezvous Point Confirming Stage (RPCS) is first carried out to obtain a rendezvous point and the candidate Many-to-many Multicast Sharing Tree (M2ST); then an Optimal Solution Identifying Stage (OSIS) is performed to generate a modified M2ST rooted at the rendezvous point, and an optimal M2ST is obtained by comparing the original M2ST and the modified M2ST. The network topology of Cernet2, GéANT and Internet2 were considered for the simulation of GIQM. The results from a series of experiments demonstrate the good performance and outstanding power-saving potential of the proposed GIQM with QoS satisfied

    Virtual Enterprises Risk Management DSS under Electronic Commerce

    Get PDF
    Risk management is important to the development of enterprise as well as social-economic prosperity. Virtual enterprise is the potential mode of future enterprise under electronic commerce environment and the risk management for it is a popular research area recently. Due to the complexity of its risk management a decision support system (DSS) with 3-bases-1-cell structure was designed. By coordinating data base, model base, algorithm base and dialogue cell, the functions of project management, risk identification, risk assessment, risk evaluation and risk programming was supported. The user-friendly system has such main characteristics as generality for verity virtual enterprise as well as different projects and the flexibility of model and algorithm, ensuring a standardized, scientific and informational risk management for virtual enterprises

    Grape seed extract prevents skeletal muscle wasting in interleukin 10 knockout mice

    Get PDF
    BACKGROUND: Muscle wasting is frequently a result of cancers, AIDS, chronic diseases and aging, which often links to muscle inflammation. Although grape seed extract (GSE) has been widely used as a human dietary supplement for health promotion and disease prevention primarily due to its anti-oxidative and anti-inflammative effects, it is unknown whether GSE affects muscle wasting. The objective is to test the effects of GSE supplementation on inflammation and muscle wasting in interleukin (IL)-10 knockout mice, a recently developed model for human frailty. METHODS: Male IL-10 knockout (IL10KO) C57BL/6 mice at 6 weeks of age were assigned to either 0% or 0.1% GSE (in drinking water) groups (n = 10) for 12 weeks, when skeletal muscle was sampled for analyses. Wild-type C57BL/6 male mice were used as controls. RESULTS: Tibialis anterior muscle weight and fiber size of IL10KO mice were much lower than wild-type mice. IL10KO enhanced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling and inflammasome formation when compared to wild-type mice. Phosphorylation of anabolic signaling was inhibited, whereas muscle specific ubiquitin ligase, AMP-activated protein kinase (AMPK) and apoptotic signaling were up-regulated in IL10KO mice. GSE supplementation effectively rectified these adverse changes in IL10KO muscle, which provide an explanation for the enhanced muscle mass, reduced protein degradation and apoptosis in GSE supplemented mice compared to IL10KO mice without supplementation. CONCLUSION: GSE supplementation effectively prevents muscle wasting in IL10KO mice, showing that GSE can be used as an auxiliary treatment for muscle loss associated with chronic inflammation and frailty

    Risk Evaluation for Virtual Enterprise

    Get PDF
    Virtual Enterprise is the potential mode of enterprise in the future. The risk management for virtual enterprise is the new research area recently. In virtual enterprise, the enterprise operation is always organized by project mode and there is always less historical data and there are many uncertain factors. Hence, in this paper, the fuzzy synthetic evaluation model for the risk evaluation of virtual enterprise is established focus on the project mode and uncertain characteristics of virtual enterprise. In the 5 levels model, the goal and sub-goal of the enterprise, the process of the project, as well as the risk event and risk factors are considered. The case study suggests that the method is useful

    Mixup-Augmented Meta-Learning for Sample-Efficient Fine-Tuning of Protein Simulators

    Full text link
    Molecular dynamics simulations have emerged as a fundamental instrument for studying biomolecules. At the same time, it is desirable to perform simulations of a collection of particles under various conditions in which the molecules can fluctuate. In this paper, we explore and adapt the soft prompt-based learning method to molecular dynamics tasks. Our model can remarkably generalize to unseen and out-of-distribution scenarios with limited training data. While our work focuses on temperature as a test case, the versatility of our approach allows for efficient simulation through any continuous dynamic conditions, such as pressure and volumes. Our framework has two stages: 1) Pre-trains with data mixing technique, augments molecular structure data and temperature prompts, then applies a curriculum learning method by increasing the ratio of them smoothly. 2) Meta-learning-based fine-tuning framework improves sample-efficiency of fine-tuning process and gives the soft prompt-tuning better initialization points. Comprehensive experiments reveal that our framework excels in accuracy for in-domain data and demonstrates strong generalization capabilities for unseen and out-of-distribution samples

    Programming hydrogel adhesion with engineered polymer network topology

    Full text link
    Hydrogel adhesion that can be easily modulated in magnitude, space, and time is desirable in many emerging applications ranging from tissue engineering, and soft robotics, to wearable devices. In synthetic materials, these complex adhesion behaviors are often achieved individually with mechanisms and apparatus that are difficult to integrate. Here, we report a universal strategy to embody multifaceted adhesion programmability in synthetic hydrogels. By designing the surface network topology of a hydrogel, supramolecular linkages that result in contrasting adhesion behaviors are formed on the hydrogel interface. The incorporation of different topological linkages leads to dynamically tunable adhesion with high-resolution spatial programmability without alteration of bulk mechanics and chemistry. Further, the association of linkages enables stable and tunable adhesion kinetics that can be tailored to suit different applications. We rationalize the physics of chain slippage, rupture, and diffusion that underpins emergent programmable behaviors. We then incorporate the strategy into the designs of various devices such as smart wound patches, fluidic channels, drug-eluting devices, and reconfigurable soft robotics. Our study presents a simple and robust platform in which adhesion controllability in multiple aspects can be easily integrated into a single design of a hydrogel network
    • …
    corecore