608 research outputs found
Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions
Over the past decade, tremendous progress has been achieved in the development of nanoscale semiconductor materials with a wide range of bandgaps by alloying different individual semiconductors. These materials include traditional II-VI and III-V semiconductors and their alloys, inorganic and hybrid perovskites, and the newly emerging 2D materials. One important common feature of these materials is that their nanoscale dimensions result in a large tolerance to lattice mismatches within a monolithic structure of varying composition or between the substrate and target material, which enables us to achieve almost arbitrary control of the variation of the alloy composition. As a result, the bandgaps of these alloys can be widely tuned without the detrimental defects that are often unavoidable in bulk materials, which have a much more limited tolerance to lattice mismatches. This class of nanomaterials could have a far-reaching impact on a wide range of photonic applications, including tunable lasers, solid-state lighting, artificial photosynthesis and new solar cells
Ruddlesden-Popper Phase in Two-Dimensional Inorganic Halide Perovskites: A Plausible Model and the Supporting Observations.
A Ruddlesden-Popper (RP) type structure is well-known in oxide perovskites and is related to many interesting properties such as superconductivity and ferroelectricity. However, the RP phase has not yet been discovered in inorganic halide perovskites. Here, we report the direct observation of unusual structure in two-dimensional CsPbBr3 nanosheets which could be interpreted as the RP phase based on model simulations. Structural details of the plausible RP domains and domain boundaries between the RP and conventional perovskite phases have been revealed on the atomic level using aberration-corrected scanning transmission electron microscopy. The finding marks a major advance toward future inorganic halide RP phase synthesis and theoretical modeling, as well as unraveling their structure-property relationship
Recommended from our members
Semiconductor nanowire, what’s next II?
Historically, nanoscience research has been centered around three classes of nanoscale building blocks based on their dimensionalities: C60 & quantum dot (0-dimensional, 0D), nanotube and nanowire (1D), graphene and 2D materials (2D). After almost three decades of active research, semiconductor nanowires have been established as one of the key building blocks in nanoscience and technology, with vibrant subfields including nanoelectronics, nanophotonics, thermoelectrics, energy conversion and storage. Here I present some of my personal reflections and perspective in this very active research field with a particular focus on the future development of nanowire nanolasers and nanowire photochemical diodes
Recommended from our members
Solar-driven carbon dioxide fixation using photosynthetic semiconductor bio-hybrids.
Solar-driven conversion of carbon dioxide to value-added carbon products is an ambitious objective of ongoing research efforts. However, high overpotential, low selectivity and poor CO2 mass transfer plague purely inorganic electrocatalysts. In this instance, we can consider a class of biological organisms that have evolved to achieve CO2 fixation. We can harness and combine the streamlined CO2 fixation pathways of these whole organisms with the exceptional ability of semiconducting nanomaterials to harvest solar energy. A novel nanomaterial-biological interface has been pioneered in which light-capturing cadmium sulfide nanoparticles reside within individual organisms essentially powering biological CO2 fixation by solar energy. In order to further develop the photosensitized organism platform, more biocompatible photosensitizers and cytoprotective strategies are required as well as elucidation of charge transfer mechanisms. Here, we discuss the ability of gold nanoclusters to photosensitize a model acetogen effectively and biocompatibly. Additionally, we present innovative materials including two-dimensional metal organic framework sheets and alginate hydrogels to shield photosensitized cells. Finally, we delve into original work using transient absorption spectroscopy to inform on charge transfer mechanisms
Lads in Waiting: Another 'Crisis'. An Exploratory Study on the Indian 'Fresher' Rating Seafarers
Studies on work/labour precarity in recent decades have pointed out its close connections with neoliberal globalisation. While maritime shipping, arguably the most globalised of all contemporary industries, has always been recognised as a singularly precarious sector where seafarers exhibit vulnerabilities towards various forms of exploitation, what has not been sufficiently recognised is an emergent and increasingly manifest polarisation within the industry. Whilst much emphasis has been laid on a so-called 'manning crisis', namely, an acute industry-wide shortage of qualified seagoing officers, little is known about an equally undesirable oversupply of ratings, especially at the junior/trainee level. This oversupply results in an employer's market, rendering seafaring particularly precarious for the ratings, which maybe seen as another crisis. This paper seeks to explore the oversupply of ratings from a localised, 'ground-level' perspective by looking at the lived experiences of a group of job-seeking 'fresher seamen' based at a 'Seamen’s Hostel' in a major maritime city of India. Using a mixture of quantitative and qualitative methods, the paper explores the situation of these 'lads in waiting', the various difficulties they face, and their vulnerabilities. Finally, it makes some attempts at understanding the causes of the problem from a policy angle, and suggests that a better information system, and a more integrated regulatory approach, among other things, are areas in which Indian policy makers can put in effort to tackle the problem
Recommended from our members
Rich Chemistry in Inorganic Halide Perovskite Nanostructures.
Halide perovskites have emerged as a class of promising semiconductor materials owing to their remarkable optoelectronic properties exhibiting in solar cells, light-emitting diodes, semiconductor lasers, etc. Inorganic halide perovskites are attracting increasing attention because of the higher stability toward moisture, light, and heat as compared with their organic-inorganic hybrid counterparts. In particular, inorganic halide perovskite nanomaterials provide controllable morphology, tunable optoelectronic properties, and improved quantum efficiency. Here, the development controlled synthesis of desired inorganic halide perovskite nanostructures by various chemical approaches is described. Utilizing these nanostructures as platforms, anion exchange chemistry for wide compositional and optical tunabilities is described, and the rich structural phase transition phenomenon and mechanism investigated systematically. Furthermore, these nanostructures and extracted knowledge are applied to design photonic, photovoltaic, and thermoelectric devices. Finally, future directions and challenges toward improvement of the optical, electrical, and optoelectronic properties, exploration of the anion and cation exchange kinetics, and alleviation of the stability and toxicity issues in inorganic lead based halide perovskites are discussed to provide an outlook on this promising field
Recommended from our members
Nanowire Photoelectrochemistry.
Recent applications of photoelectrochemistry at the semiconductor/liquid interface provide a renewable route of mimicking natural photosynthesis and yielding chemicals from sunlight, water, and air. Nanowires, defined as one-dimensional nanostructures, exhibit multiple unique features for photoelectrochemical applications and promise better performance as compared to their bulk counterparts. This article reviews the use of semiconductor nanowires in photoelectrochemistry. After introducing fundamental concepts essential to understanding nanowires and photoelectrochemistry, the review considers answers to the following questions: (1) How can we interface semiconductor nanowires with other building blocks for enhanced photoelectrochemical responses? (2) How are nanowires utilized for photoelectrochemical half reactions? (3) What are the techniques that allow us to obtain fundamental insights of photoelectrochemistry at single-nanowire level? (4) What are the design strategies for an integrated nanosystem that mimics a closed cycle in artificial photosynthesis? This framework should help readers evaluate the salient features of nanowires for photoelectrochemical applications, promoting the sustainable development of solar-powered chemical plants that will benefit our society in the long run
Recommended from our members
Nanowire-based All Oxide Solar Cells
We present an all-oxide solar cell fabricated from vertically oriented zinc oxide nanowires and cuprous oxide nanoparticles. Our solar cell consists of vertically oriented n-type zinc oxide nanowires, surrounded by a film constructed from p-type cuprous oxide nanoparticles. Our solution-based synthesis of inexpensive and environmentally benign oxide materials in a solar cell would allow for the facile production of large-scale photovoltaic devices. We found that the solar cell performance is enhanced with the addition of an intermediate oxide insulating layer between the nanowires and the nanoparticles. This observation of the important dependence of the shunt resistance on the photovoltaic performance is widely applicable to any nanowire solar cell constructed with the nanowire array in direct contact with one electrode
- …