286 research outputs found

    Microbial Air Contamination in an Intensive Care Unit

    Get PDF
    Unit layout affects every aspect of intensive care services, including patient safety. A previous study has shown that patients admitted to beds adjacent to the sink and to the door of a large bayroom had the highest number of positive blood cultures and the highest blood culture incidence density, respectively. The present study measures microbial air contamination in a medical intensive care unit of a medical center in central Taiwan. Of the 17 rooms, 8 rooms with distinct physical environmental characteristics were selected. Sampling tests were conducted between December 2013 and February 2014 with a microbial air sampler (MAS-100NT). TSA was used for bacteria collection and DG18 for fungi collection. The overall average bacterial and fungal concentrations were 83CFU/m3 and 69CFU/m3, respectively. The ranges were between 8-354 CFU/m3 and 0-1468 CFU/m3, respectively. A significant difference was found in the bacterial concentration (p=.005) between different room locations. The highest concentration was found in the rooms located at the front end of the circulation (99 CFU/m3), while the lowest was found in the rooms located at the rear end of the circulation (55CFU/m3). Differences in fungal concentrations for different room locations did not reach statistical significance. In addition, differences in bacterial and fungal concentrations for rooms with different sink locations did not reach statistical significance. Even though the microbial concentrations generally complied with standards, the results may help designers and hospital administrators develop a healthier environment for patients

    Microbial Air Contamination in an Intensive Care Unit

    Get PDF
    Unit layout affects every aspect of intensive care services, including patient safety. A previous study has shown that patients admitted to beds adjacent to the sink and to the door of a large bayroom had the highest number of positive blood cultures and the highest blood culture incidence density, respectively. The present study measures microbial air contamination in a medical intensive care unit of a medical center in central Taiwan. Of the 17 rooms, 8 rooms with distinct physical environmental characteristics were selected. Sampling tests were conducted between December 2013 and February 2014 with a microbial air sampler (MAS-100NT). TSA was used for bacteria collection and DG18 for fungi collection. The overall average bacterial and fungal concentrations were 83CFU/m3 and 69CFU/m3, respectively. The ranges were between 8-354 CFU/m3 and 0-1468 CFU/m3, respectively. A significant difference was found in the bacterial concentration (p=.005) between different room locations. The highest concentration was found in the rooms located at the front end of the circulation (99 CFU/m3), while the lowest was found in the rooms located at the rear end of the circulation (55CFU/m3). Differences in fungal concentrations for different room locations did not reach statistical significance. In addition, differences in bacterial and fungal concentrations for rooms with different sink locations did not reach statistical significance. Even though the microbial concentrations generally complied with standards, the results may help designers and hospital administrators develop a healthier environment for patients

    Critical quality attributes (CQAs) of a therapeutic antibody produced from integrated continuous bioprocessing

    Get PDF
    The integrated continuous bioprocess provides an innovative way to produce protein drugs with flexibility and efficiency. However, during the long-term cultivation and complicated production, how to ensure the process stability and product quality is critically important. In this study, the monoclonal antibody (mAb) was produced in a bioreactor operated in a perfusion mode utilizing the ATF cell retention system for up to 32 days. The 2L harvest per day starting at day 10 was continuously purified using the 3-column periodic counter-current (PCC) chromatography system. The first protein A capture purification was performed with the dynamic binding capacity of 50% breakthrough around 60 mg mAb/mL of resin (vs 20 mg/mL resin for batch purification) for 120 cycles or 360 column operations followed by a polishing step of mixed mode chromatography for 20 cycles. The process and quality attributes were monitored daily. The results demonstrate consistency in both the purification process and the mAb qualities (in the aspects of product integrity, aggregates, and glycan profile) between PCC and batch purifications. Culture-related charge heterogeneity was observed accompanied by an increase of bioreactor harvest time using both batch and PCC purification processes. In addition, the impurities such as endotoxin and HCP were also monitored while under this high capacity utilization of chromatography resins. By sharing the insights of process and quality attributes, we hope to provide better understanding on the process-related heterogeneity between batch and continuous production and/or purification

    Interactions between Amyloid-β and Hemoglobin: Implications for Amyloid Plaque Formation in Alzheimer's Disease

    Get PDF
    Accumulation of amyloid-β (Aβ) peptides in the brain is one of the central pathogenic events in Alzheimer's disease (AD). However, why and how Aβ aggregates within the brain of AD patients remains elusive. Previously, we demonstrated hemoglobin (Hb) binds to Aβ and co-localizes with the plaque and vascular amyloid deposits in post-mortem AD brains. In this study, we further characterize the interactions between Hb and Aβ in vitro and in vivo and report the following observations: 1) the binding of Hb to Aβ required iron-containing heme; 2) other heme-containing proteins, such as myoglobin and cytochrome C, also bound to Aβ; 3) hemin-induced cytotoxicity was reduced in neuroblastoma cells by low levels of Aβ; 4) Hb was detected in neurons and glial cells of post-mortem AD brains and was up-regulated in aging and APP/PS1 transgenic mice; 5) microinjection of human Hb into the dorsal hippocampi of the APP/PS1 transgenic mice induced the formation of an envelope-like structure composed of Aβ surrounding the Hb droplets. Our results reveal an enhanced endogenous expression of Hb in aging brain cells, probably serving as a compensatory mechanism against hypoxia. In addition, Aβ binds to Hb and other hemoproteins via the iron-containing heme moiety, thereby reducing Hb/heme/iron-induced cytotoxicity. As some of the brain Hb could be derived from the peripheral circulation due to a compromised blood-brain barrier frequently observed in aged and AD brains, our work also suggests the genesis of some plaques may be a consequence of sustained amyloid accretion at sites of vascular injury

    CITRIC: A low-bandwidth wireless camera network platform

    Get PDF
    In this paper, we propose and demonstrate a novel wireless camera network system, called CITRIC. The core component of this system is a new hardware platform that integrates a camera, a frequency-scalable (up to 624 MHz) CPU, 16 MB FLASH, and 64 MB RAM onto a single device. The device then connects with a standard sensor network mote to form a camera mote. The design enables in-network processing of images to reduce communication requirements, which has traditionally been high in existing camera networks with centralized processing. We also propose a back-end client/server architecture to provide a user interface to the system and support further centralized processing for higher-level applications. Our camera mote enables a wider variety of distributed pattern recognition applications than traditional platforms because it provides more computing power and tighter integration of physical components while still consuming relatively little power. Furthermore, the mote easily integrates with existing low-bandwidth sensor networks because it can communicate over the IEEE 802.15.4 protocol with other sensor network platforms. We demonstrate our system on three applications: image compression, target tracking, and camera localization

    Development of an Integrated Microfluidic Perfusion Cell Culture System for Real-Time Microscopic Observation of Biological Cells

    Get PDF
    This study reports an integrated microfluidic perfusion cell culture system consisting of a microfluidic cell culture chip, and an indium tin oxide (ITO) glass-based microheater chip for micro-scale perfusion cell culture, and its real-time microscopic observation. The system features in maintaining both uniform, and stable chemical or thermal environments, and providing a backflow-free medium pumping, and a precise thermal control functions. In this work, the performance of the medium pumping scheme, and the ITO glass microheater were experimentally evaluated. Results show that the medium delivery mechanism was able to provide pumping rates ranging from 15.4 to 120.0 μL·min−1. In addition, numerical simulation and experimental evaluation were conducted to verify that the ITO glass microheater was capable of providing a spatially uniform thermal environment, and precise temperature control with a mild variation of ±0.3 °C. Furthermore, a perfusion cell culture was successfully demonstrated, showing the cultured cells were kept at high cell viability of 95 ± 2%. In the process, the cultured chondrocytes can be clearly visualized microscopically. As a whole, the proposed cell culture system has paved an alternative route to carry out real-time microscopic observation of biological cells in a simple, user-friendly, and low cost manner

    Genotype-phenotype correlation in Taiwanese children with diazoxide-unresponsive congenital hyperinsulinism

    Get PDF
    ObjectiveCongenital hyperinsulinism (CHI) is a group of clinically and genetically heterogeneous disorders characterized by dysregulated insulin secretion. The aim of the study was to elucidate genetic etiologies of Taiwanese children with the most severe diazoxide-unresponsive CHI and analyze their genotype-phenotype correlations.MethodsWe combined Sanger with whole exome sequencing (WES) to analyze CHI-related genes. The allele frequency of the most common variant was estimated by single-nucleotide polymorphism haplotype analysis. The functional effects of the ATP-sensitive potassium (KATP) channel variants were assessed using patch clamp recording and Western blot.ResultsNine of 13 (69%) patients with ten different pathogenic variants (7 in ABCC8, 2 in KCNJ11 and 1 in GCK) were identified by the combined sequencing. The variant ABCC8 p.T1042QfsX75 identified in three probands was located in a specific haplotype. Functional study revealed the human SUR1 (hSUR1)-L366F KATP channels failed to respond to intracellular MgADP and diazoxide while hSUR1-R797Q and hSUR1-R1393C KATP channels were defective in trafficking. One patient had a de novo dominant mutation in the GCK gene (p.I211F), and WES revealed mosaicism of this variant from another patient.ConclusionPathogenic variants in KATP channels are the most common underlying cause of diazoxide-unresponsive CHI in the Taiwanese cohort. The p.T1042QfsX75 variant in the ABCC8 gene is highly suggestive of a founder effect. The I211F mutation in the GCK gene and three rare SUR1 variants associated with defective gating (p.L366F) or traffic (p.R797Q and p.R1393C) KATP channels are also associated with the diazoxide-unresponsive phenotype

    Spanning trees on the Sierpinski gasket

    Full text link
    We obtain the numbers of spanning trees on the Sierpinski gasket SGd(n)SG_d(n) with dimension dd equal to two, three and four. The general expression for the number of spanning trees on SGd(n)SG_d(n) with arbitrary dd is conjectured. The numbers of spanning trees on the generalized Sierpinski gasket SGd,b(n)SG_{d,b}(n) with d=2d=2 and b=3,4b=3,4 are also obtained.Comment: 20 pages, 8 figures, 1 tabl

    Molecular signature of clinical severity in recovering patients with severe acute respiratory syndrome coronavirus (SARS-CoV)

    Get PDF
    BACKGROUND: Severe acute respiratory syndrome (SARS), a recent epidemic human disease, is caused by a novel coronavirus (SARS-CoV). First reported in Asia, SARS quickly spread worldwide through international travelling. As of July 2003, the World Health Organization reported a total of 8,437 people afflicted with SARS with a 9.6% mortality rate. Although immunopathological damages may account for the severity of respiratory distress, little is known about how the genome-wide gene expression of the host changes under the attack of SARS-CoV. RESULTS: Based on changes in gene expression of peripheral blood, we identified 52 signature genes that accurately discriminated acute SARS patients from non-SARS controls. While a general suppression of gene expression predominated in SARS-infected blood, several genes including those involved in innate immunity, such as defensins and eosinophil-derived neurotoxin, were upregulated. Instead of employing clustering methods, we ranked the severity of recovering SARS patients by generalized associate plots (GAP) according to the expression profiles of 52 signature genes. Through this method, we discovered a smooth transition pattern of severity from normal controls to acute SARS patients. The rank of SARS severity was significantly correlated with the recovery period (in days) and with the clinical pulmonary infection score. CONCLUSION: The use of the GAP approach has proved useful in analyzing the complexity and continuity of biological systems. The severity rank derived from the global expression profile of significantly regulated genes in patients may be useful for further elucidating the pathophysiology of their disease
    • …
    corecore