93 research outputs found

    Non-perturbative renormalization of overlap quark bilinears on domain wall fermion configurations

    Full text link
    We present renormalization constants of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations. Both overlap and domain wall fermions have chiral symmetry on the lattice. The scale independent renormalization constant for the local axial vector current is computed using a Ward Identity. The renormalization constants for the scalar, pseudoscalar and vector current are calculated in the RI-MOM scheme. Results in the MS-bar scheme are obtained by using perturbative conversion ratios. The analysis uses in total six ensembles with lattice sizes 24^3x64 and 32^3x64.Comment: 7 pages, 10 figures, presented at the 31st International Symposium on Lattice Field Theory (LATTICE 2013), 29 July - 3 August 2013, Mainz, German

    SparseCtrl: Adding Sparse Controls to Text-to-Video Diffusion Models

    Full text link
    The development of text-to-video (T2V), i.e., generating videos with a given text prompt, has been significantly advanced in recent years. However, relying solely on text prompts often results in ambiguous frame composition due to spatial uncertainty. The research community thus leverages the dense structure signals, e.g., per-frame depth/edge sequences, to enhance controllability, whose collection accordingly increases the burden of inference. In this work, we present SparseCtrl to enable flexible structure control with temporally sparse signals, requiring only one or a few inputs, as shown in Figure 1. It incorporates an additional condition encoder to process these sparse signals while leaving the pre-trained T2V model untouched. The proposed approach is compatible with various modalities, including sketches, depth maps, and RGB images, providing more practical control for video generation and promoting applications such as storyboarding, depth rendering, keyframe animation, and interpolation. Extensive experiments demonstrate the generalization of SparseCtrl on both original and personalized T2V generators. Codes and models will be publicly available at https://guoyww.github.io/projects/SparseCtrl .Comment: Project page: https://guoyww.github.io/projects/SparseCtr

    Non-perturbative renormalization of overlap quark bilinears on 2+1-flavor domain wall fermion configurations

    Get PDF
    We present renormalization constants of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations. This setup is being used by the chiQCD collaboration in calculations of physical quantities such as strangeness in the nucleon and the strange and charm quark masses. The scale independent renormalization constant for the axial vector current is computed using the Ward Identity. The renormalization constants for scalar, pseudoscalar and vector current are calculated in the RI-MOM scheme. Results in the MS-bar scheme are also given. The step scaling function of quark masses in the RI-MOM scheme is computed as well. The analysis uses, in total, six different ensembles of three sea quarks each on two lattices with sizes 24^3x64 and 32^3x64 at spacings a=(1.73 GeV)^{-1} and (2.28 GeV)^{-1}, respectively.Comment: 26 pages, 17 figures. More discussions on O(4) breaking effects, and on the perturbative running and a^2p^2 extrapolation of Zs. A subsection for the calculation of the step scaling function of quark mass is added. References added. Version to appear in PR

    Dynamic Storyboard Generation in an Engine-based Virtual Environment for Video Production

    Full text link
    Amateurs working on mini-films and short-form videos usually spend lots of time and effort on the multi-round complicated process of setting and adjusting scenes, plots, and cameras to deliver satisfying video shots. We present Virtual Dynamic Storyboard (VDS) to allow users storyboarding shots in virtual environments, where the filming staff can easily test the settings of shots before the actual filming. VDS runs on a "propose-simulate-discriminate" mode: Given a formatted story script and a camera script as input, it generates several character animation and camera movement proposals following predefined story and cinematic rules to allow an off-the-shelf simulation engine to render videos. To pick up the top-quality dynamic storyboard from the candidates, we equip it with a shot ranking discriminator based on shot quality criteria learned from professional manual-created data. VDS is comprehensively validated via extensive experiments and user studies, demonstrating its efficiency, effectiveness, and great potential in assisting amateur video production.Comment: Project page: https://virtualfilmstudio.github.io

    A Novel Wireless Localization Fusion Algorithm: BP-LS-RSSI

    Get PDF
    With the increasing demand for location-aware services, high-precision indoor positioning play more important role for some applications. People also put forward higher requirements on positioning accuracy. BP neural network as a kind of typical forward neural network has the very strong self learning ability and can approximate any discontinuity of rational function. This paper proposes BP-LS-RSSI localization model, then use the model to fix received signal strength indication (RSSI) values for positioning by the LS algorithm. Since the positioning accuracy do not satisfy the needs by the traditional LS algorithm, we transfer the RSSI values into confidence weights according to the topology of network, then use the weighted least squares (LS) method to further optimize the positioning system. Simulation results show that the proposed algorithm has obvious increase to the positioning accuracy is a feasible localization algorithm

    AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning

    Full text link
    With the advance of text-to-image (T2I) diffusion models (e.g., Stable Diffusion) and corresponding personalization techniques such as DreamBooth and LoRA, everyone can manifest their imagination into high-quality images at an affordable cost. However, adding motion dynamics to existing high-quality personalized T2Is and enabling them to generate animations remains an open challenge. In this paper, we present AnimateDiff, a practical framework for animating personalized T2I models without requiring model-specific tuning. At the core of our framework is a plug-and-play motion module that can be trained once and seamlessly integrated into any personalized T2Is originating from the same base T2I. Through our proposed training strategy, the motion module effectively learns transferable motion priors from real-world videos. Once trained, the motion module can be inserted into a personalized T2I model to form a personalized animation generator. We further propose MotionLoRA, a lightweight fine-tuning technique for AnimateDiff that enables a pre-trained motion module to adapt to new motion patterns, such as different shot types, at a low training and data collection cost. We evaluate AnimateDiff and MotionLoRA on several public representative personalized T2I models collected from the community. The results demonstrate that our approaches help these models generate temporally smooth animation clips while preserving the visual quality and motion diversity. Codes and pre-trained weights are available at https://github.com/guoyww/AnimateDiff.Comment: Codes and Supplementary Material: https://github.com/guoyww/AnimateDif

    Charm and Strange Quark Masses and \u3cem\u3ef\u3csub\u3eD\u3csub\u3es\u3c/sub\u3e\u3c/sub\u3e\u3c/em\u3e from Overlap Fermions

    Get PDF
    We use overlap fermions as valence quarks to calculate meson masses in a wide quark mass range on the 2 + 1-flavor domain-wall fermion gauge configurations generated by the RBC and UKQCD Collaborations. . . . For the remainder of the abstract, please download this article or visit https://doi.org/10.1103/PhysRevD.92.03451

    Longer screen time utilization is associated with the polygenic risk for Attention-deficit/hyperactivity disorder with mediation by brain white matter microstructure

    Get PDF
    Attention-deficit/hyperactivity disorder (ADHD) has been reported to be associated with longer screen time utilization (STU) at the behavioral level. However, whether there are shared neural links between ADHD symptoms and prolonged STU is not clear and has not been explored in a single large-scale dataset. Leveraging the genetics, neuroimaging and behavioral data of 11,000+ children aged 9-11 from the Adolescent Brain Cognitive Development cohort, this study investigates the associations between the polygenic risk and trait for ADHD, STU, and white matter microstructure through cross-sectionally and longitudinal analyses. Children with higher polygenic risk scores for ADHD tend to have longer STU and more severe ADHD symptoms. Fractional anisotropy (FA) values in several white matter tracts are negatively correlated with both the ADHD polygenic risk score and STU, including the inferior frontal-striatal tract, inferior frontal-occipital fasciculus, superior longitudinal fasciculus and corpus callosum. Most of these tracts are linked to visual-related functions. Longitudinal analyses indicate a directional effect of white matter microstructure on the ADHD scale, and a bi-directional effect between the ADHD scale and STU. Furthermore, reduction of FA in several white matter tracts mediates the association between the ADHD polygenic risk score and STU. These findings shed new light on the shared neural overlaps between ADHD symptoms and prolonged STU, and provide evidence that the polygenic risk for ADHD is related, via white matter microstructure and the ADHD trait, to STU. This study was mainly supported by NSFC and National Key R&D Program of China. [Abstract copyright: Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved.

    Early-initiated childhood reading for pleasure : associations with better cognitive performance, mental well-being and brain structure in young adolescence

    Get PDF
    Childhood is a crucial neurodevelopmental period. We investigated whether childhood reading for pleasure (RfP) was related to young adolescent assessments of cognition, mental health, and brain structure. We conducted a cross-sectional and longitudinal study in a large-scale US national cohort (10 000 + young adolescents), using the well-established linear mixed model and structural equation methods for twin study, longitudinal and mediation analyses. A 2-sample Mendelian randomization (MR) analysis for potential causal inference was also performed. Important factors including socio-economic status were controlled. Early-initiated long-standing childhood RfP (early RfP) was highly positively correlated with performance on cognitive tests and significantly negatively correlated with mental health problem scores of young adolescents. These participants with higher early RfP scores exhibited moderately larger total brain cortical areas and volumes, with increased regions including the temporal, frontal, insula, supramarginal; left angular, para-hippocampal; right middle-occipital, anterior-cingulate, orbital areas; and subcortical ventral-diencephalon and thalamus. These brain structures were significantly related to their cognitive and mental health scores, and displayed significant mediation effects. Early RfP was longitudinally associated with higher crystallized cognition and lower attention symptoms at follow-up. Approximately 12 h/week of youth regular RfP was cognitively optimal. We further observed a moderately significant heritability of early RfP, with considerable contribution from environments. MR analysis revealed beneficial causal associations of early RfP with adult cognitive performance and left superior temporal structure. These findings, for the first time, revealed the important relationships of early RfP with subsequent brain and cognitive development and mental well-being

    Host Langerin (CD207) is a receptor for Yersinia pestis phagocytosis and promotes dissemination

    Get PDF
    Yersinia pestis is a Gram-negative bacterium that causes plague. After Y. pestis overcomes the skin barrier, it encounters antigen-presenting cells (APCs), such as Langerhans and dendritic cells. They transport the bacteria from the skin to the lymph nodes. However, the molecular mechanisms involved in bacterial transmission are unclear. Langerhans cells (LCs) express Langerin (CD207), a calcium-dependent (C-type) lectin. Furthermore, Y. pestis possesses exposed core oligosaccharides. In this study, we show that Y. pestis invades LCs and Langerin-expressing transfectants. However, when the bacterial core oligosaccharides are shielded or truncated, Y. pestis propensity to invade Langerhans and Langerin-expressing cells decreases. Moreover, the interaction of Y. pestis with Langerin-expressing transfectants is inhibited by purified Langerin, a DC-SIGN (DC-specific intercellular adhesion molecule 3 grabbing nonintegrin)-like molecule, an anti-CD207 antibody, purified core oligosaccharides and several oligosaccharides. Furthermore, covering core oligosaccharides reduces the mortality associated with murine infection by adversely affecting the transmission of Y. pestis to lymph nodes. These results demonstrate that direct interaction of core oligosaccharides with Langerin facilitates the invasion of LCs by Y. pestis. Therefore, Langerin-mediated binding of Y. pestis to APCs may promote its dissemination and infection.Peer reviewe
    corecore