3 research outputs found

    Nanoparticle-Aided Amplification of Fluorescence Polarization for Ultrasensitively Monitoring Activity of Telomerase

    No full text
    To realize facile and reliable analyzing telomerase activity in homogeneous, herein, for the first time, a fluorescent polarization (FP) strategy was developed for polymerase chain reaction (PCR) free monitoring activity of human telomerase at single-cell level ground on gold nanoparticle (GNP) enhancement of FP. First, thiolated telomerase substrate (TS) primer is modified to the surface of GNP via Au–S bond. In the presence of telomerase, TS primer was extended via adding hexamer repeats (GGGTTA), leading to the formation of a long elongation DNA. Several short carboxyfluorescein (FAM)-modified complementary DNA (F-cDNA) can hybridize with the hexamer repeats, resulting in a sharp increase in FP value. Because of the GNP enhancement and self-amplification of telomerase, telomerase activity accounting to one HeLa cell can be rapidly detected in homogeneous solution. Telomerase activities of various cell lines were also favorably estimated. Meanwhile, the inhibition efficiency of telomerase inhibitor was studied, which holds great potential in screening telomerase-targeted anticancer drugs as well. So, a facile method was put forward to reliably and ultrasensitively detect telomerase activity

    Biomass-Swelling Assisted Synthesis of Hierarchical Porous Carbon Fibers for Supercapacitor Electrodes

    No full text
    The preparation of porous materials from renewable energy sources is attracting intensive attention due to in terms of the application/economic advantage, and pore structural design is core in the development of efficient supercapacitors or available porous media. In this work, we focused on the transformation of natural biomass, such as cotton, into more stable porous carbonaceous forms for energy storage in practical applications. Biomorphic cotton fibers are pretreated under the effect of NaOH/urea swelling on cellulose and are subsequently used as a biomass carbon source to mold the porous microtubule structure through a certain degree of calcining. As a merit of its favorable structural features, the hierarchical porous carbon fibers exhibit an enhanced electric double layer capacitance (221.7 F g<sup>–1</sup> at 0.3 A g<sup>–1</sup>) and excellent cycling stability (only 4.6% loss was observed after 6000 cycles at 2 A g<sup>–1</sup>). A detailed investigation displays that biomass-swelling behavior plays a significant role, not only in improving the surface chemical characteristics of biomorphic cotton fibers but also in facilitating the formation of a hierarchical porous carbon fiber structure. In contrast to traditional methods, nickel foams have been used as the collector for supercapacitor that requiring no additional polymeric binders or carbon black as support or conductive materials. Because of the absence of additive materials, we can further enhance capacitance. This remarkable capacitive performance can be due to sufficient void space within the porous microstructure. By effectively increasing the contact area between the carbon surface and the electrolyte, which can reduce the ion diffusion pathway or buffer the volume change during cycling. This approach opens a novel route to produce the abundantly different morphology of porous biomass-based carbon materials and proposes a green alternative method to meet sustainable development needs

    Ordered Assembly of NiCo<sub>2</sub>O<sub>4</sub> Multiple Hierarchical Structures for High-Performance Pseudocapacitors

    No full text
    The design and development of nanomaterials has become central to the advancement of pseudocapacitive performance. Many one-dimensional nanostructures (1D NSs), two-dimensional nanostructures (2D NSs), and three-dimensional hierarchical structures (3D HSs) composed of these building blocks have been synthesized as pseudocapacitive materials via different methods. However, due to the unclear assembly mechanism of these NSs, reports of HSs simultaneously assembled from two or more types of NSs are rare. In this article, NiCo<sub>2</sub>O<sub>4</sub> multiple hierarchical structures (MHSs) composed of 1D nanowires and 2D nanosheets are simply grown on Ni foam using an ordered two-step hydrothermal synthesis followed by annealing processing. The low-dimensional nanowire is found to hold priority in the growth order, rather than the high-dimensional nanosheet, thus effectively promoting the integration of these different NSs in the assembly of the NiCo<sub>2</sub>O<sub>4</sub> MHSs. With vast electroactive surface area and favorable mesoporous architecture, the NiCo<sub>2</sub>O<sub>4</sub> MHSs exhibit a high specific capacitance of up to 2623.3 F g<sup>–1</sup>, scaled to the active mass of the NiCo<sub>2</sub>O<sub>4</sub> sample at a current density of 1 A g<sup>–1</sup>. A nearly constant rate performance of 68% is achieved at a current density ranging from 1 to 40 A g<sup>–1</sup>, and the sample retains approximately 94% of its maximum capacitance even after 3000 continuous charge–discharge cycles at a consistently high current density of 10 A g<sup>–1</sup>
    corecore