74 research outputs found

    The society of genes: networks of functional links between genes from comparative genomics

    Get PDF
    BACKGROUND: Comparative genomics provides at least three methods beyond traditional sequence similarity for identifying functional links between genes: the examination of common phylogenetic distributions, the analysis of conserved proximity along the chromosomes of multiple genomes, and observations of fusions of genes into a multidomain gene in another organism. We have previously generated the links according to each of these methods individually for 43 known microbial genomes. Here we combine these results to construct networks of functional associations. RESULTS: We show that the functional networks obtained by applying these methods have different topologies and that the information they provide is largely additive. In particular, the combined networks of functional links contain an average of 57% of an organism's complete genetic complement, uncover substantial portions of known pathways, and suggest the function of previously unannotated genes. In addition, the combined networks are qualitatively different from the networks obtained using individual methods. They have a dominant cluster that contains approximately 80%-90% of the genes, independent of genome size, and the dominant clusters show the small world behavior expected of a biological system, with global connectivity that is nearly random, and local properties that are highly ordered. CONCLUSIONS: When the information on functional linkage provided by three emerging computational methods is combined, the integrated network uncovers large numbers of conserved pathways and identifies clusters of functionally related genes. It therefore shows considerable utility and promise as a tool for understanding genomic structure, and for guiding high throughput experimental investigations

    Evolution of gene fusions: horizontal transfer versus independent events

    Get PDF
    BACKGROUND: Gene fusions can be used as tools for functional prediction and also as evolutionary markers. Fused genes often show a scattered phyletic distribution, which suggests a role for processes other than vertical inheritance in their evolution. RESULTS: The evolutionary history of gene fusions was studied by phylogenetic analysis of the domains in the fused proteins and the orthologous domains that form stand-alone proteins. Clustering of fusion components from phylogenetically distant species was construed as evidence of dissemination of the fused genes by horizontal transfer. Of the 51 examined gene fusions that are represented in at least two of the three primary kingdoms (Bacteria, Archaea and Eukaryota), 31 were most probably disseminated by cross-kingdom horizontal gene transfer, whereas 14 appeared to have evolved independently in different kingdoms and two were probably inherited from the common ancestor of modern life forms. On many occasions, the evolutionary scenario also involves one or more secondary fissions of the fusion gene. For approximately half of the fusions, stand-alone forms of the fusion components are encoded by juxtaposed genes, which are known or predicted to belong to the same operon in some of the prokaryotic genomes. This indicates that evolution of gene fusions often, if not always, involves an intermediate stage, during which the future fusion components exist as juxtaposed and co-regulated, but still distinct, genes within operons. CONCLUSION: These findings suggest a major role for horizontal transfer of gene fusions in the evolution of protein-domain architectures, but also indicate that independent fusions of the same pair of domains in distant species is not uncommon, which suggests positive selection for the multidomain architectures

    Forty years of The Selfish Gene are not enough

    Get PDF

    Widespread ectopic expression of olfactory receptor genes

    Get PDF
    BACKGROUND: Olfactory receptors (ORs) are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. RESULTS: We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. CONCLUSION: The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information

    CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq

    Get PDF
    Single-cell transcriptomics requires a method that is sensitive, accurate, and reproducible. Here, we present CEL-Seq2, a modified version of our CEL-Seq method, with threefold higher sensitivity, lower costs, and less hands-on time. We implemented CEL-Seq2 on Fluidigm’s C1 system, providing its first single-cell, on-chip barcoding method, and we detected gene expression changes accompanying the progression through the cell cycle in mouse fibroblast cells. We also compare with Smart-Seq to demonstrate CEL-Seq2’s increased sensitivity relative to other available methods. Collectively, the improvements make CEL-Seq2 uniquely suited to single-cell RNA-Seq analysis in terms of economics, resolution, and ease of use.Seventh Framework Programme (European Commission)Israel Science Foundatio

    A Distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-Infiltrating T Cells

    Get PDF
    Reversing the dysfunctional T cell state that arises in cancer and chronic viral infections is the focus of therapeutic interventions; however, current therapies are effective in only some patients and some tumor types. To gain a deeper molecular understanding of the dysfunctional T cell state, we analyzed population and single-cell RNA profiles of CD8+tumor-infiltrating lymphocytes (TILs) and used genetic perturbations to identify a distinct gene module for T cell dysfunction that can be uncoupled from T cell activation. This distinct dysfunction module is downstream of intracellular metallothioneins that regulate zinc metabolism and can be identified at single-cell resolution. We further identify Gata-3, a zinc-finger transcription factor in the dysfunctional module, as a regulator of dysfunction, and we use CRISPR-Cas9 genome editing to show that it drives a dysfunctional phenotype in CD8+TILs. Our results open novel avenues for targeting dysfunctional T cell states while leaving activation programs intact
    • …
    corecore