58 research outputs found
Oxygen glucose deprivation increases CaMKII activity which is correlated with cell death in rat hippocampal slice cultures.
<p>Rat hippocampal slice cultures were exposed to the CaMKII inhibitor, KN93 (10- or 20 µM) or its inactive analog, KN92 (10 µM) 2 h prior to OGD. Slices were harvested 2 h after OGD to determine effects on CaMKII activity. OGD increases CaMKII-like activity (A). The increase in CaMKII-like activity is dose-dependently attenuated by KN93, but not by KN92 (A). In addition the effect of OGD on cell death (B) and LDH release (C) were evaluated at 8 h after OGD. The effect on cell injury was quantified by measuring mean changes fluorescence due to PI uptake in the whole slice (B). KN93 attenuated both PI uptake and LDH release (B & C). The LDH absorbance at 490 nm was normalized by protein content. Data are presented as mean ± S.E from 4–8 independent experiments using 24 pooled slices per experiment. * <i>P</i><0.05 vs. control, †<i>P</i><0.05 vs. OGD alone, ‡P<0.05 vs. OGD+KN-92, § P<0.05 vs. OGD+10 µM KN93; #P<0.05 vs. no OGD+KN93 10 µM.</p
Autocamitide 2-related inhibitor peptide reduces cell death in rat hippocampal slice cultures expose to OGD.
<p>Rat hippocampal slice cultures were exposed to the CaMKII inhibitor, AIP (5 µM), 2 h prior to OGD. AIP significantly attenuated the OGD-mediated increase in CaMKII-like activity (A). AIP also significantly attenuated the increase in cell death (B) and LDH release (C) associated with OGD. Data are presented as mean ± S.E from 4 independent experiments using 24 pooled slices per experiment. * <i>P</i><0.05 vs. control, †<i>P</i><0.05 vs. OGD alone.</p
KN93 treatment attenuates CaMKII activity in the neonatal rat brain exposed to hypoxia-ischemia.
<p>P7 neonatal rats were pre-treated with KN93 (0.3 nmol and 0.6 nmol), the inactive analog KN92 (0.3 nmol), or vehicle then exposed to HI. Two hours after HI, CaMKII-like activity was determined in the right hemisphere of the brain and compared to the contralateral side. There is a significant increase in the right hemisphere that is dose-dependently attenuated by KN93, but not KN-92. Values are presented as mean ± S.E from 6 animals per group. *p<0.05 vs. sham, †p<0.05 vs. HI+vehicle, ‡P<0.05 vs. HI+KN92, § P<0.05 vs. HI+0.6 nmol KN93.</p
KN93 attenuates infract volume in the neonatal rat brain exposed to hypoxia-ischemia.
<p>P7 neonatal rats were pre-treated with KN93 (0.3- or 0.6 nmol), the inactive analog KN92 (0.3- or 0.6 nmol), or vehicle then exposed to HI. Twenty-four hours after HI the brains were removed, sectioned and subjected to TTC staining to determine changes in the infarct volume in the right hemisphere. Representative TTC stained sections are shown (A). KN93 (0.3 nmol), but not KN93 (0.6 nmol) or KN92 (either dose), reduces both the absolute infract volume (B) and relative infarct volume (C) associated with HI. Values are presented as mean ± S.E from 6 animals per group. *P<0.05 vs. left hemisphere, †p<0.05 vs. HI+vehicle, ‡P<0.05 vs. HI+0.3 nmol KN92, § P<0.05 vs. HI+0.3 nmol KN93, ψ P<0.05 vs. HI+0.6 nmol KN93.</p
KN93 attenuates p38MAP kinase activation and p47<sup>phox</sup> membrane translation in the neonatal rat brain exposed to hypoxia-ischemia.
<p>P7 neonatal rats were pre-treated with KN93 (0.3 nmol), the inactive analog KN92 (0.3 nmol), or vehicle then exposed to HI. Two hours after HI the brain was removed and the right hemisphere subjected to Western blotting to determine the effect on p38MAPK activation (estimated by ratio of phospho-p38MAPK to total p38MAPK) and p47<sup>phox</sup> membrane translocation. KN93 pretreatment attenuates both the increase in phospho-p38MAPK (A) and the membrane translocation of p47<sup>phox</sup> (B). Values are presented as mean ± S.E from 6 animals per group. *p<0.05 vs. sham, †p<0.05 vs. HI + vehicle, ‡P<0.05 vs. HI+KN92.</p
KN93 attenuates NADPH oxidase activity and superoxide generation in the neonatal rat brain exposed to hypoxia-ischemia.
<p>P7 neonatal rats were pre-treated with KN93 (0.3 nmol), the inactive analog KN92 (0.3 nmol), or vehicle then exposed to HI. Two hours after HI, NADPH oxidase activity (A) and superoxide levels (B) were determined in the right hemisphere of the brain. There is a significant increase in both NADPH oxidase activity and superoxide levels in the right hemisphere of the neonatal brain that is attenuated by KN93, but not by KN92. Values are presented as mean ± S.E from 6 animals per group. *p<0.05 vs. sham, †p<0.05 vs. HI+vehicle, ‡P<0.05 vs. HI+KN92.</p
CaMKII inhibition attenuates apoptosis in rat hippocampal slice cultures exposed to oxygen glucose deprivation.
<p>Rat hippocampal slice cultures were exposed to OGD in the presence of the CaMKII inhibitor, KN93 or its inactive analog, KN92 (10 µM, 2 h prior to OGD). Slices were harvested 8 h after OGD and subjected to Western blot analysis to determine effects on cleaved caspase-3 (A). A representative blot is shown (A). OGD increases cleaved caspase-3 levels and this is attenuated by KN93, but not by KN92 (A). Slices were also subjected to TUNEL analysis. Representative images are shown demonstrating TUNEL staining of apoptotic cells (green) co-localized with PI staining of all the nuclei (red) (B). The magnification used was 10×. Quantification of the percentage of apoptotic nuclei to total nuclei was also carried out indicating that KN-93 pretreatment decreased the level of apoptotic nuclei in response to OGD (C). Data are presented as mean ± S.E from 4 independent experiments using 24 pooled slices per experiment. * <i>P</i><0.05 vs. no OGD, †<i>P</i><0.05 vs. OGD alone, ‡P<0.05 vs. OGD+KN92.</p
KN93 attenuates neural cell death in the neonatal rat brain exposed to hypoxia-ischemia.
<p>P7 neonatal rats were pre-treated with KN93 (0.3 nmol), the inactive analog KN92 (0.3 nmol), or vehicle then exposed to HI. Twenty-four hours after HI the brains were removed, the right hemisphere was subject to Western blot analysis to determine effects on cleaved caspase-3. A representative blot is shown (A). HI increases cleaved caspase-3 levels and this is attenuated by KN93, but not by KN92 (A). The right hemisphere was also sectioned and subjected to TUNEL staining to determine the effect on apoptosis in the neonatal brain. Sections were counterstained with PI (red) and representative images are shown (B). Quantitation of TUNEL positive cells shows that KN93, but not KN92, attenuates the increase in apoptosis in the right hemisphere by HI (C). Values are presented as mean ± S.E from 6 animals per group. *p<0.05 vs. left hemisphere, †p<0.05 vs. HI+vehicle, ‡P<0.05 vs. HI+KN92.</p
Whole-Genome Resequencing of Holstein Bulls for Indel Discovery and Identification of Genes Associated with Milk Composition Traits in Dairy Cattle
<div><p>The use of whole-genome resequencing to obtain more information on genetic variation could produce a range of benefits for the dairy cattle industry, especially with regard to increasing milk production and improving milk composition. In this study, we sequenced the genomes of eight Holstein bulls from four half- or full-sib families, with high and low estimated breeding values (EBVs) of milk protein percentage and fat percentage at an average effective depth of 10×, using Illumina sequencing. Over 0.9 million nonredundant short insertions and deletions (indels) [1–49 base pairs (bp)] were obtained. Among them, 3,625 indels that were polymorphic between the high and low groups of bulls were revealed and subjected to further analysis. The vast majority (76.67%) of these indels were novel. Follow-up validation assays confirmed that most (70%) of the randomly selected indels represented true variations. The indels that were polymorphic between the two groups were annotated based on the cattle genome sequence assembly (UMD3.1.69); as a result, nearly 1,137 of them were found to be located within 767 annotated genes, only 5 (0.138%) of which were located in exons. Then, by integrated analysis of the 767 genes with known quantitative trait loci (QTL); significant single-nucleotide polymorphisms (SNPs) previously identified by genome-wide association studies (GWASs) to be associated with bovine milk protein and fat traits; and the well-known pathways involved in protein, fat synthesis, and metabolism, we identified a total of 11 promising candidate genes potentially affecting milk composition traits. These were <i>FCGR2B</i>, <i>CENPE</i>, <i>RETSAT</i>, <i>ACSBG2</i>, <i>NFKB2</i>, <i>TBC1D1</i>, <i>NLK</i>, <i>MAP3K1</i>, <i>SLC30A2</i>, <i>ANGPT1</i> and <i>UGDH</i>. Our findings provide a basis for further study and reveal key genes for milk composition traits in dairy cattle.</p></div
The number of indels in each chromosome.
<p>The indel represents the common differential one between the high and low groups.</p
- …