21 research outputs found

    Supersensitive Odorant Receptor Underscores Pleiotropic Roles of Indoles in Mosquito Ecology

    Get PDF
    Mosquitoes exhibit highly diverse and fast evolving odorant receptors (ORs). The indole-sensitive OR gene clade, comprised of Or2 and Or10 is a notable exception on account of its conservation in both mosquito subfamilies. This group of paralogous genes exhibits a complex developmental expression pattern in Aedes aegypti: AaegOr2 is expressed in both adults and larvae, AaegOr10 is adult-specific and a third member named AaegOr9 is larva-specific. OR2 and OR10 have been deorphanized and are selectively activated by indole and skatole, respectively. Using the two-electrode voltage clamp of Xenopus oocytes expressing Ae. aegypti ORs, we show that AaegOR9 is supersensitive and narrowly tuned to skatole. Our findings suggest that Ae. aegypti has evolved two distinct molecular strategies to detect skatole in aquatic and terrestrial environments, highlighting the central ecological roles of indolic compounds in the evolutionary and life histories of these insects

    MaMADS2 repression in banana fruits modifies hormone synthesis and signalling pathways prior to climacteric stage

    Get PDF
    Background: While the role of ethylene in fruit ripening has been widely studied, the contributions of additional plant hormones are less clear. Here we examined the interactions between the transcription factor MaMADS2-box which plays a major role in banana fruit ripening and hormonal regulation. Specifically, we used MaMADS2 repressed lines in transcriptome and hormonal analyses throughout ripening and assessed hormone and gene expression perturbations as compared to wild-type (WT) control fruit. Results: Our analyses revealed major differences in hormones levels and in expression of hormone synthesis and signaling genes mediated by MaMADS2 especially in preclimacteric pulp. Genes encoding ethylene biosynthesis enzymes had lower expression in the pulp of the repressed lines, consistent with reduced ethylene production. Generally, the expression of other hormone (auxin, gibberellins, abscisic acid, jasmonic acid and salicylic acid) response pathway genes were down regulated in the WT pulp prior to ripening, but remained high in MaMADS2 repressed lines. Hormone levels of abscisic acid were also higher, however, active gibberellin levels were lower and auxin levels were similar with MaMADS2 repression as compared to WT. Although abscisic level was higher in MaMADS2 repression, exogenous abscisic acid shortened the time to ethylene production and increased MaMADS2 mRNA accumulation in WT. Exogenous ethylene did not influence abscisic acid level. CRE - a cytokinin receptor, increased its expression during maturation in WT and was lower especially at prebreaker in the repressed line and zeatin level was lower at mature green of the repressed line in comparison to WT. Conclusions: In addition to previously reported effects of MaMADS2 on ethylene, this transcription factor also influences other plant hormones, particularly at the pre-climacteric stage. The cytokinin pathway may play a previously unanticipated role via MaMADS2 in banana ripening. Finally, abscisic acid enhances MaMADS2 expression to promote ripening, but the transcription factor in turn auto inhibits ABA synthesis and signaling. Together, these results demonstrate a complex interaction of plant hormones and banana fruit ripening mediated by MaMADS2

    Roles of the anaphase-promoting complex/cyclosome and of its activator Cdc20 in functional substrate binding

    No full text
    The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit ubiquitin-protein ligase that targets for degradation cell-cycle regulatory proteins during exit from mitosis and in the G(1) phase of the cell cycle. The activity of APC/C in mitosis and in G(1) requires interaction with the activator proteins Cdc20 and Cdh1, respectively. Substrates of APC/C–Cdc20 contain a recognition motif called the “destruction box” (D-box). The mode of the action of APC/C activators and their possible role in substrate binding remain poorly understood. Several investigators suggested that Cdc20 and Cdh1 mediate substrate recognition, whereas others proposed that substrates bind to APC/C or to APC/C–activator complexes. All these studies used binding assays, which do not necessarily indicate that substrate binding is functional and leads to product formation. In the present investigation we examined this problem by an “isotope-trapping” approach that directly demonstrates productive substrate binding. With this method we found that the simultaneous presence of both APC/C and Cdc20 is required for functional substrate binding. By contrast, with conventional binding assays we found that either Cdc20 or APC/C can bind substrate by itself, but only at low affinity and relaxed selectivity for D-box. Our results are consistent with models in which interaction of substrate with specific binding sites on both APC/C and Cdc20 is involved in selective and productive substrate binding

    CIRCADIAN CLOCK ASSOCIATED1 Transcript Stability and the Entrainment of the Circadian Clock in Arabidopsis1[W][OA]

    No full text
    The circadian clock is an endogenous mechanism that generates rhythms with an approximately 24-h period and enables plants to predict and adapt to daily and seasonal changes in their environment. These rhythms are generated by molecular oscillators that in Arabidopsis (Arabidopsis thaliana) have been shown to consist of interlocking feedback loops involving a number of elements. An important characteristic of circadian oscillators is that they can be entrained by daily environmental changes in light and temperature. Previous work has shown that one possible entrainment point for the Arabidopsis oscillator is the light-mediated regulation of expression of one of the oscillator genes, CIRCADIAN CLOCK ASSOCIATED1 (CCA1). In this article, we have used transgenic plants with constitutive CCA1 expression to show that light also regulates CCA1 transcript stability. Our experiments show that CCA1 messenger RNA is relatively stable in the dark and in far-red light but has a short half-life in red and blue light. Furthermore, using transgenic plants expressing chimeric CCA1 constructs, we demonstrate that the instability determinants in CCA1 transcripts are probably located in the coding region. We suggest that the combination of light regulation of CCA1 transcription and CCA1 messenger RNA degradation is important for ensuring that the Arabidopsis circadian oscillator is accurately entrained by environmental changes

    Posttranslational Regulation of CIRCADIAN CLOCK ASSOCIATED1 in the Circadian Oscillator of Arabidopsis1[W][OA]

    No full text
    As an adaptation to life in a world with predictable daily changes, most eukaryotes and some prokaryotes have endogenous circadian (approximately 24 h) clocks. In plants, the circadian clock regulates a diverse range of cellular and physiological events from gene expression and protein phosphorylation to cellular calcium oscillations, hypocotyl growth, leaf movements, and photoperiod-dependent flowering. In Arabidopsis (Arabidopsis thaliana), as in other model organisms, such as Drosophila (Drosophila melanogaster) and mice, circadian rhythms are generated by molecular oscillators that consist of interlocking feedback loops involving a number of elements. CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYLS (LHY) are closely related single myb transcription factors that have been identified as key elements in the Arabidopsis oscillator. Research in other model organisms has shown that posttranslational regulation of oscillator components plays a critical role in the generation of the approximately 24-h cycles. To examine the role of posttranslational regulation of CCA1 and LHY in the Arabidopsis oscillator, we generated transgenic plants with tagged CCA1 and LHY under the control of their own promoters. We have shown that these tagged proteins are functional and can restore normal circadian rhythms to CCA1- and LHY-null plants. Using the tagged proteins, we demonstrate that CCA1 can form both homodimers and heterodimers with LHY. Furthermore, we also show that CCA1 is localized to the nucleus in vivo and that there is no significant delay between the translation of CCA1 and its translocation to the nucleus. We discuss our findings in the context of the functioning of the Arabidopsis oscillator

    Banana MaMADS

    No full text

    A sucrose-specific receptor in Bemisia tabaci and its putative role in phloem feeding

    No full text
    Summary: In insects, specialized feeding on the phloem sap (containing mainly the sugar sucrose) has evolved only in some hemipteran lineages. This feeding behavior requires an ability to locate feeding sites buried deeply within the plant tissue. To determine the molecular mechanism involved, we hypothesized that the phloem-feeding whitefly Bemisia tabaci relies on gustatory receptor (GR)-mediated sugar sensing. We first conducted choice assays, which indicated that B. tabaci adults consistently choose diets containing higher sucrose concentrations. Next, we identified four GR genes in the B. tabaci genome. One of them, BtabGR1, displayed significant sucrose specificity when expressed in Xenopus oocytes. Silencing of BtabGR1 significantly interfered with the ability of B. tabaci adults to discriminate between non-phloem and phloem concentrations of sucrose. These findings suggest that in phloem feeders, sugar sensing by sugar receptors might allow tracking an increasing gradient of sucrose concentrations in the leaf, leading eventually to the location of the feeding site
    corecore