34 research outputs found

    Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    No full text
    International audiencePlasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV/m is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations

    Plasma-photonic spatiotemporal synchronization of relativistic electron and laser beams

    Get PDF
    Modern particle accelerators and their applications increasingly rely on precisely coordinated interactions of intense charged particle and laser beams. Femtosecond-scale synchronization alongside micrometre-scale spatial precision are essential e.g. for pump-probe experiments, seeding and diagnostics of advanced light sources and for plasma-based accelerators. State-of-the-art temporal or spatial diagnostics typically operate with low-intensity beams to avoid material damage at high intensity. As such, we present a plasma-based approach, which allows measurement of both temporal and spatial overlap of high-intensity beams directly at their interaction point. It exploits amplification of plasma afterglow arising from the passage of an electron beam through a laser-generated plasma filament. The corresponding photon yield carries the spatiotemporal signature of the femtosecond-scale dynamics, yet can be observed as a visible light signal on microsecond-millimetre scales

    Electron bunch generation from a plasma photocathode

    Get PDF
    Plasma waves generated in the wake of intense, relativistic laser or particle beams can accelerate electron bunches to giga-electronvolt (GeV) energies in centimetre-scale distances. This allows the realization of compact accelerators having emerging applications, ranging from modern light sources such as the free-electron laser (FEL) to energy frontier lepton colliders. In a plasma wakefield accelerator, such multi-gigavolt-per-metre (GV m−1^{-1}) wakefields can accelerate witness electron bunches that are either externally injected or captured from the background plasma. Here we demonstrate optically triggered injection and acceleration of electron bunches, generated in a multi-component hydrogen and helium plasma employing a spatially aligned and synchronized laser pulse. This ''plasma photocathode'' decouples injection from wake excitation by liberating tunnel-ionized helium electrons directly inside the plasma cavity, where these cold electrons are then rapidly boosted to relativistic velocities. The injection regime can be accessed via optical density down-ramp injection, is highly tunable and paves the way to generation of electron beams with unprecedented low transverse emittance, high current and 6D-brightness. This experimental path opens numerous prospects for transformative plasma wakefield accelerator applications based on ultra-high brightness beams

    Proof-of-Principle Experiment for FEL-Based Coherent Electron Cooling,”

    Get PDF
    Abstract Coherent electron cooling (CEC) has a potential to significantly boost luminosity of high-energy, highintensity hadron-hadron and electron-hadron colliders. In a CEC system, a hadron beam interacts with a cooling electron beam. A perturbation of the electron density caused by ions is amplified and fed back to the ions to reduce the energy spread and the emittance of the ion beam. To demonstrate the feasibility of CEC we propose a proof-of-principle experiment at RHIC using SRF linac. In this paper, we describe the setup for CeC installed into one of RHIC's interaction regions. We present results of analytical estimates and results of initial simulations of cooling a gold-ion beam at 40 GeV/u energy via CeC

    Recent results at FACET

    No full text
    Yakimenko, Vitaly: SLA

    APPLICATION OF METHOD OF LIE OPERATORS FOR ANALYSIS OF SPIN MOTION

    No full text
    The investigation object is the bunch of the polarized particles. The aim is to investigate the motion of the spins in the accelerators and storages. The algorithms for numerical modelling of the non-linear spin motion in the storages have been developed firstly. The practical modelling of the spin motion for optimization of the magnetic structures in the experimental plants has been realized firstly. The results can be used at the State Scientific Centre "Institute of Nuclear Physics, Siberian Division of the Russian Academy of Sciences", Institute of High-Energy Physics, United Institute of Nuclear Researches a.oAvailable from VNTIC / VNTIC - Scientific & Technical Information Centre of RussiaSIGLERURussian Federatio
    corecore