123 research outputs found

    A finite source perishable inventory system with second optional service and server interruptions

    Get PDF
    In this article, a service facility inventory system with server interruptions and a nite number of sources are considered. The inventory is replenished according to (s; S) ordering policy. Using the matrix methods, the stationary distribution of the stock level, server status and waiting area level is obtained in the steady state case. The Laplace-Stieltjes transform of the waiting time of the tagged customer is derived. Many impartment system performance measures are derived and the total expected cost rate is computed under a suitable cost structure. The results are illustrated numerically.The second author research was supported by DST PURSE Phase II for newly recruited faculty of University of Madras (no. DST-PURSE PHASE II/ 2014/ 686).http://orion.journals.ac.zaam2016Industrial and Systems Engineerin

    Single-electron latch with granular film charge leakage suppressor

    Full text link
    A single-electron latch is a device that can be used as a building block for Quantum-dot Cellular Automata (QCA) circuits. It consists of three nanoscale metal "dots" connected in series by tunnel junctions; charging of the dots is controlled by three electrostatic gates. One very important feature of a single-electron latch is its ability to store ("latch") information represented by the location of a single electron within the three dots. To obtain latching, the undesired leakage of charge during the retention time must be suppressed. Previously, to achieve this goal, multiple tunnel junctions were used to connect the three dots. However, this method of charge leakage suppression requires an additional compensation of the background charges affecting each parasitic dot in the array of junctions. We report a single-electron latch where a granular metal film is used to fabricate the middle dot in the latch which concurrently acts as a charge leakage suppressor. This latch has no parasitic dots, therefore the background charge compensation procedure is greatly simplified. We discuss the origins of charge leakage suppression and possible applications of granular metal dots for various single-electron circuits.Comment: 21 pages, 4 figure

    Infrared polarimetry Anisotropy of polymer nanofibers

    Get PDF
    We present a straightforward and easily interpretable multi scale infrared IR spectroscopic characterization of anisotropy and arrangement of polymer nanofibers. Direct spectral interpretation of fiber bundles and single fibers with respect to their anisotropic properties is possible by applying non invasive IR polarimetry at defined polarization states with spatial resolutions from the macroscale a few mm down to the nanoscale a few 10 nm . A vivid relation is shown to exist between vibrational bands in s polarized reflection and absorption associated photothermal spectra measured by the AFM IR technique. Such a relation is a prerequisite for detailed discussions of IR spectra with respect to complex fiber structures and material

    A comprehensive case study on integrated redundant reliability model using k-out-of-n configuration

    Get PDF
    Designers may introduce a system with multiple technologies in series to improve system efficiency. The configuration can be applied to k out of n systems if each technology contains k out of n factors. The k out of n configuration method is successful until every component of the system is successful. The efficiency of the entire system is more in amount than that of a single system factor in a k out of n shape. An Integrated Reliability Model (IRM) for the k out of n, here, an additional system is suggested to account for both the efficiencies of the factors and the number of factors in every phase and the different constraints to optimize the efficiency of the system. To enhance system efficiency, the authors employed the numerous methods of Lagrangean approach to determine the numbers and efficiency of the factors as well as the reliabilities of the phase under different parameters namely load, size, and cost. The dynamic programming approach and simulation method have been adapted to attain an integer result as well as to see the values real.https://gnedenko.net/Journal/index.htmIndustrial and Systems EngineeringSDG-09: Industry, innovation and infrastructur

    Visualizing heterogeneous dipole fields by terahertz light coupling in individual nano-junctions used in transmon qubits

    Full text link
    The fundamental challenge underlying superconducting quantum computing is to characterize heterogeneity and disorder in the underlying quantum circuits. These nonuniform distributions often lead to local electric field concentration, charge scattering, dissipation and ultimately decoherence. It is particularly challenging to probe deep sub-wavelength electric field distribution under electromagnetic wave coupling at individual nano-junctions and correlate them with structural imperfections from interface and boundary, ubiquitous in Josephson junctions (JJ) used in transmon qubits. A major obstacle lies in the fact that conventional microscopy tools are incapable of measuring simultaneous at nanometer and terahertz, "nano-THz" scales, which often associate with frequency-dependent charge scattering in nano-junctions. Here we directly visualize interface nano-dipole near-field distribution of individual Al/AlOx_{x}/Al junctions used in transmon qubits. Our THz nanoscope images show a remarkable asymmetry across the junction in electromagnetic wave-junction coupling response that manifests as "hot" vs "cold" cusp spatial electrical field structures and correlates with defected boundaries from the multi-angle deposition processes in JJ fabrication inside qubit devices. The asymmetric nano-dipole electric field contrast also correlates with distinguishing, "overshoot" frequency dependence that characterizes the charge scattering and dissipation at nanoscale, hidden in responses from topographic, structural imaging and spatially-averaged techniques. The real space mapping of junction dipole fields and THz charge scattering can be extended to guide qubit nano-fabrication for ultimately optimizing qubit coherence times

    Alteration of Proteins and Pigments Influence the Function of Photosystem I under Iron Deficiency from Chlamydomonas reinhardtii

    Get PDF
    BACKGROUND: Iron is an essential micronutrient for all organisms because it is a component of enzyme cofactors that catalyze redox reactions in fundamental metabolic processes. Even though iron is abundant on earth, it is often present in the insoluble ferric [Fe (III)] state, leaving many surface environments Fe-limited. The haploid green alga Chlamydomonas reinhardtii is used as a model organism for studying eukaryotic photosynthesis. This study explores structural and functional changes in PSI-LHCI supercomplexes under Fe deficiency as the eukaryotic photosynthetic apparatus adapts to Fe deficiency. RESULTS: 77K emission spectra and sucrose density gradient data show that PSI and LHCI subunits are affected under iron deficiency conditions. The visible circular dichroism (CD) spectra associated with strongly-coupled chlorophyll dimers increases in intensity. The change in CD signals of pigments originates from the modification of interactions between pigment molecules. Evidence from sucrose gradients and non-denaturing (green) gels indicates that PSI-LHCI levels were reduced after cells were grown for 72 h in Fe-deficient medium. Ultrafast fluorescence spectroscopy suggests that red-shifted pigments in the PSI-LHCI antenna were lost during Fe stress. Further, denaturing gel electrophoresis and immunoblot analysis reveals that levels of the PSI subunits PsaC and PsaD decreased, while PsaE was completely absent after Fe stress. The light harvesting complexes were also susceptible to iron deficiency, with Lhca1 and Lhca9 showing the most dramatic decreases. These changes in the number and composition of PSI-LHCI supercomplexes may be caused by reactive oxygen species, which increase under Fe deficiency conditions. CONCLUSIONS: Fe deficiency induces rapid reduction of the levels of photosynthetic pigments due to a decrease in chlorophyll synthesis. Chlorophyll is important not only as a light-harvesting pigment, but also has a structural role, particularly in the pigment-rich LHCI subunits. The reduced level of chlorophyll molecules inhibits the formation of large PSI-LHCI supercomplexes, further decreasing the photosynthetic efficiency

    Energy-band engineering for improved charge retention in fully self-aligned double floating-gate single-electron memories

    Full text link
    We present a new fully self-aligned single-electron memory with a single pair of nano floating gates, made of different materials (Si and Ge). The energy barrier that prevents stored charge leakage is induced not only by quantum effects but also by the conduction-band offset that arises between Ge and Si. The dimension and position of each floating gate are well defined and controlled. The devices exhibit a long retention time and single-electron injection at room temperature

    SN 2023ixf in Messier 101: Photo-ionization of Dense, Close-in Circumstellar Material in a Nearby Type II Supernova

    Full text link
    We present UV/optical observations and models of supernova (SN) 2023ixf, a type II SN located in Messier 101 at 6.9 Mpc. Early-time ("flash") spectroscopy of SN 2023ixf, obtained primarily at Lick Observatory, reveals emission lines of H I, He I/II, C IV, and N III/IV/V with a narrow core and broad, symmetric wings arising from the photo-ionization of dense, close-in circumstellar material (CSM) located around the progenitor star prior to shock breakout. These electron-scattering broadened line profiles persist for ∌\sim8 days with respect to first light, at which time Doppler broadened features from the fastest SN ejecta form, suggesting a reduction in CSM density at r≳1015r \gtrsim 10^{15} cm. The early-time light curve of SN2023ixf shows peak absolute magnitudes (e.g., Mu=−18.6M_{u} = -18.6 mag, Mg=−18.4M_{g} = -18.4 mag) that are ≳2\gtrsim 2 mag brighter than typical type II supernovae, this photometric boost also being consistent with the shock power supplied from CSM interaction. Comparison of SN 2023ixf to a grid of light curve and multi-epoch spectral models from the non-LTE radiative transfer code CMFGEN and the radiation-hydrodynamics code HERACLES suggests dense, solar-metallicity, CSM confined to r=(0.5−1)×1015r = (0.5-1) \times 10^{15} cm and a progenitor mass-loss rate of M˙=10−2\dot{M} = 10^{-2} M⊙_{\odot}yr−1^{-1}. For the assumed progenitor wind velocity of vw=50v_w = 50 km s−1^{-1}, this corresponds to enhanced mass-loss (i.e., ``super-wind'' phase) during the last ∌\sim3-6 years before explosion.Comment: 18 pages, 8 figures. Submitted to ApJ

    Acknowledgement to reviewers of journal of functional biomaterials in 2019

    Get PDF

    SN 2022oqm: A Multi-peaked Calcium-rich Transient from a White Dwarf Binary Progenitor System

    Full text link
    We present the photometric and spectroscopic evolution of SN 2022oqm, a nearby multi-peaked hydrogen- and helium-weak calcium-rich transient (CaRT). SN 2022oqm was detected 19.9 kpc from its host galaxy, the face-on spiral galaxy NGC 5875. Extensive spectroscopic coverage reveals a hot (T >= 40,000 K) continuum and carbon features observed ~1 day after discovery, SN Ic-like photospheric-phase spectra, and strong forbidden calcium emission starting 38 days after discovery. SN 2022oqm has a relatively high peak luminosity (MB = -17 mag) for CaRTs, making it an outlier in the population. We determine that three power sources are necessary to explain SN 2022oqm's light curve, with each power source corresponding to a distinct peak in its light curve. The first peak of the light curve is powered by an expanding blackbody with a power law luminosity, consistent with shock cooling by circumstellar material. Subsequent peaks are powered by a double radioactive decay model, consistent with two separate sources of photons diffusing through an optically thick ejecta. From the optical light curve, we derive an ejecta mass and 56Ni mass of ~0.89 solar masses and ~0.09 solar masses, respectively. Detailed spectroscopic modeling reveals ejecta that is dominated by intermediate-mass elements, with signs that Fe-peak elements have been well-mixed. We discuss several physical origins for SN 2022oqm and favor a white dwarf progenitor model. The inferred ejecta mass points to a surprisingly massive white dwarf, challenging models of CaRT progenitors.Comment: 33 pages, 17 figures, 5 tables, Submitted to Ap
    • 

    corecore